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Abstract: A fundamental challenge with fluorophore orientation measurement is degeneracy,
which is the inability to distinguish between multiple unique fluorophore orientations. Techniques
exist for the non-degenerate measurement of the orientations of single, static fluorophores.
However, such techniques are unsuitable for densely labeled and/or dynamic samples common
to biological research. Accordingly, a rapid, widefield microscopy technique that can measure
orientation parameters for ensembles of fluorophores in a non-degenerate manner is desirable.
We propose that exciting samples with polarized light and multiple incidence angles could enable
such a technique. We use Monte Carlo simulations to validate this approach for specific axially
symmetric ensembles of fluorophores and obtain optimal experimental parameters for its future
implementation.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Fluorophores absorb and emit polarized light in an orientation-dependent manner. Fluorescence
polarization microscopy (FPM) techniques can be used to calculate fluorophore orientation
from fluorescence intensity measurements. Widefield FPM can enable diffraction-limited
orientation mapping across fluorescence microscopy images, which is particularly useful for
characterizing molecular organization within living cells. One of the most common orientation-
mapping techniques is fluorescence detected linear dichroism (FDLD) [1], which leverages the
orientation-dependence of the intensity (I) of a fluorophore excited by plane polarized light:

I = Q(E · µ)2 = Q|E|2 |µ|2cos2(Ψ) (1)

where E is the excitation light’s dipolar electric field vector (which we interchangeably refer
to as the “measurement vector”), µ is the fluorophore’s absorption transition dipole moment,
Ψ is the angle between µ and E, and Q is a scaling constant that combines terms such as
quantum yield and detection efficiency. The observed intensity of a static (e.g. translationally
and rotationally immobile) fluorophore thus depends on the orientation of E and, as such, the
fluorophore’s orientation can be measured by recording fluorescence intensity with multiple
distinct measurement vectors.

FDLD is most commonly employed by using simple polarization optics to rotate E by angle α
around a fixed optical axis that, as is standard in epifluorescence microscopy, is perpendicular to
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the sample plane (i.e. the x-y plane) and parallel to the z-axis. In this context:

IFDLD = Q|E|2 |µ|2sin2(θ)cos2(ϕ − α) (2)

where θ and ϕ are the polar and azimuthal angles of µ in the microscope coordinate system.
(In this work, azimuthal angle is the clockwise angle from the x-axis of the projection of µ
onto the x-y plane, and polar angle is the angle between µ and the z-axis - see Fig. 1(C)). A
series of at least three images are recorded using different α angles (e.g. α = 0◦, 60◦, and 120◦,
where α = 0◦ denotes E parallel to the x-axis) such that each pixel in the image stack has at
least three intensity measurements associated with it. The measurements in each pixel can then
be fit to Eq. (1), enabling pixel-by-pixel azimuthal-angle mapping. This method is robust to
ensemble averaging, such that the best-fit ϕ value reports on the ensemble-average ϕ value when
fluorophores are overlapping and/or rotationally mobile. In addition, information about the
best-fit sinusoid’s amplitude can be used to infer properties about a fluorophore’s (or fluorescent
ensemble’s) orientational heterogeneity and, in certain scenarios, average θ value.

Fig. 1. (A) VALiD microscope setup showing excitation laser beam (green), E (orange), µ
(red, superimposed on the chemical structure of an example fluorophore), rotating half wave
plate (HWP), sliding lens (SL), and objective back focal plane (BFP). (B) I as a function
of β calculated using Eq. (1) with α = 45◦, φ = 60◦, and θ = 45◦ and illustrated for five
distinct β values. (C) Fluorophore azimuthal angle (ϕ) and polar angle (θ) shown in cartesian
coordinate system. (D) Bisected cone of E orientations achievable when α = 45◦. (E) Five
distinct fluorophore orientations and (F) corresponding intensity curves calculated using
conventional FDLD (left) and VALiD (right).



Research Article Vol. 28, No. 7 / 30 March 2020 / Optics Express 10041

FDLD is a technologically accessible and versatile technique that has been used to image
the orientation of fluorescent ensembles [1–10] and single fluorophores [11]. One limitation
of FDLD is that it cannot be used to image fluorophores that are perpendicular to the sample
plane (when θ = 0◦, Ψ = 90◦ and, therefore, I = 0 for all α). Furthermore, and critically for this
work, measurements of ϕ are strictly two-dimensional because they are confined to the x-y plane.
Any effort to measure three-dimensional orientation is thwarted by a fundamental limitation of
this implementation of FDLD: All measurement vectors are co-planar with the x-y plane, which
causes measurement degeneracy. In other words, any given µ cannot be distinguished from its
reflection across the sample plane. To use an example, an orientation measurement of ϕ = 45◦,
θ = 30◦ is indistinguishable from ϕ = 45◦, θ = 120◦ because the two orientations produce the
same intensity at all α values. This can generally be expressed mathematically using Eq. (2):

Q|E|2 |µ|2sin2(θ)cos2(ϕ) = Q|E|2 |µ|2sin2(180◦−θ)cos2(ϕ) . (3)

A second degree of degeneracy arises from negation of µ, as can be illustrated using a modification
of Eq. (1):

Q(E · (−µ))2 = Q|E|2 |−µ|2cos2(Ψ) = Q|E|2 |µ|2cos2(Ψ). (4)

As such, FDLD is a “four-fold degenerate” technique. For any given set of measurements, four
possible µ orientations exist on two distinct axes; one axis is parallel to µ and −µ, and the other
axis is parallel to the reflections (across the x-y plane) of µ and −µ. Similar degeneracies hinder
alternative FPM approaches, such as emission splitting [12] and polarized total internal reflection
fluorescence (TIRF) [13,14]. Eliminating the degeneracy described in Eq. (3) would reduce
the degree of degeneracy from four-fold to two-fold and is an attractive development because it
would enable measurement of a unique axis that is parallel to µ. For the purposes of this work,
we will henceforth refer to two-fold degenerate techniques that yield a unique axis simply as
“non-degenerate”.

Several previously presented techniques that use the orientation dependence of emission
and/or excitation for the measurement of individual fluorophores’ orientations are non-degenerate
[11,15–26]. However, these techniques generally require fluorophores to be spatially and
rotationally static and spatially isolated from each other. (While some techniques allow for limited
rotational mobility [24–26], they still require individual fluorophores to be spatially isolated).
These conditions are not always possible; there are many situations in which samples are densely
labeled with fluorophores that exhibit localized organization. There are many applications in
which it would be useful to measure the average 3D orientation of semi-ordered spatiotemporal
ensembles of fluorophores. However, orientation mapping of densely labeled samples has thus
far only been accomplished using, at best, four-fold degenerate techniques.

For example, we recently developed molecular force microscopy (MFM). MFM employs FDLD
and DNA mechanotechnology [27] tension sensors to measure the orientation of traction forces
at the cell-substrate interface with unprecedented spatial and temporal resolution [2,28]. The
four-fold degeneracy of FDLD limits the power of this technique to provide biophysical insight
by preventing direct mapping of force vectors; each measurement represents two distinct force
orientations with equal likelihood, each of which has a distinct biological meaning. This limitation
prevents useful forms of inquiry (such as force-balance analysis) that would be illuminating
considering the increasingly apparent importance of force orientation in molecular biophysics
research [29–32] and the increasing use of techniques like MFM in the development of active
force generating nanomaterials [33,34].
Herein, we present the first non-degenerate technique, to the best of our knowledge, for

ensemble fluorophore orientation mapping on densely labeled samples. This technique is a
variant of FDLD that leverages a variable incidence polarized excitation beam and, as such, we
call it variable incidence angle linear dichroism (VALiD).
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VALiD eliminates measurement degeneracy by rotating E in three-dimensions. This rotation
can only be achieved by tilting the excitation beam with respect to the sample plane. One possible
VALiD microscope setup is illustrated in Fig. 1(A): a rotatable half wave plate (HWP) is used to
vary α of a linearly polarized, collimated excitation laser beam. A sliding lens is then used to
laterally shift the position of the excitation beam’s focal point on the objective lens’s back focal
plane (BFP), which tilts the laser beam as it leaves the objective such that it enters the sample
at angle β. While there are many ways to implement VALiD within this framework, we start
by considering the simplest implementation (which we call configuration 1): α is fixed at a
constant value (α = α0) and multiple images are acquired at different distinct β values. Setting
α0 = 90◦ makes E invariant with changing β and setting α0 = 0◦ re-introduces degeneracy by
restricting E to y-z plane (thus making the y-z plane a new plane of symmetry). As such, an
intermediate value of α0 (such as 45◦) must be used.
The expected intensity of a single static fluorophore imaged with α0 = 45◦ and varying β

angles is shown in Fig. 1(B). Note that varying β rotates E through a bisected cone with half
angle α0 centered on the x-axis (Fig. 1(D)). The measurement vectors in this cone are not
coplanar, ensuring that each orientation of µ will produce a unique set of intensity measurements
(Fig. 1(E),(F)). Theoretical VALiD curves for five static fluorophores with the same ϕ but
different θ calculated using α0 = 45◦ and β ∈ [−90◦, 90◦] are shown in Fig. 1(F) (right).
For reference, we also show intensity curves for the same orientations calculated according
to conventional FDLD, where β = 0 and α ∈ [0◦, 180◦] (Fig. 1(F) (left)). Note two key
distinctions: first, in VALiD, all five curves are unique while curves generated from FDLD are
degenerate; second, VALiD generates a curve for the θ = 0◦ case while FDLD does not. In
practice, three-dimensional fluorophore orientation can be calculated from experimental intensity
measurements via least-squares residual fitting to Eq. (1).

2. Mathematical modeling and computational methods

In this work, we will use computational methods to predict the experimental conditions under
which VALiD can be correctly implemented. We first derive idealized equations for the
fluorescence intensity of axially symmetric distributions of fluorophores. We then perform
Monte Carlo simulations of VALiD measurements to model the effect of noise on orientation
measurements and understand the effects of various experimental conditions and parameters on
measurement quality. Throughout this text, we use non-bold type for scalars (e.g. φ, θ, A) and
bold type for vectors (e.g. µ, E). Vectors are described conventionally as 3× 1 matrices. Unit
vectors are defined with a hat; |v| = v̂ . We use the standard x-y-z coordinate system to describe
the microscope coordinate system and a local k-l-m coordinate system to describe fluorophore
ensembles. Within this local coordinate system, we denote polar angle as δ and azimuthal angle
as γ. These quantities are matched to specific vectors using subscripts (e.g. δµ and δE). Finally,
we will use rotation matrices; Rv(τ) is a 3× 3 matrix that, when multiplied by a vector, rotates
the vector by τ degrees around the axis parallel to v. We can define the orientation of E and µ
with rotation matrices:

Ê = Ry(β)Rz(α)x̂ = Rm(γE)Rl(δE)m̂ (5)

µ̂ = Rz(ϕ)Ry(θ)ẑ = Rm(γµ)Rl(δµ)m̂. (6)

2.1. Fluorescence intensity of a conical ensemble

To enable the measurement of ensemble average orientation, we first derive equations for the
expected fluorescence intensity of an ensemble of fluorophores that are uniformly distributed
around a “symmetry axis”. The orientation of the symmetry axis is defined by the unit vector m̂
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Fig. 2. (A) Global coordinate system showing orientation of symmetry axis m̂ denoted
with polar angle Θ and azimuthal angle Φ. (B,C) Local coordinate system centered on m̂
showing orientation of (B) µ with local polar angle δµ and local azimuthal angle γµ and
(C) E with local polar angle δE and local azimuthal angle γE. (D) Depiction of ensembles
of fluorophores distributed uniformly around symmetry axis m̂ via conical and Watson
distributions. These ensembles can respectively be exactly and approximately decomposed
into a dipole and a disk. (E) Intensity curves of disk (blue) and dipole (orange) components
of ensemble and dashed lines showing weighted averages for 15◦ increments of δ0 with
Θ = Φ = α0 = 45◦, and A = 1. (F) Surface plot showing the error (multiplied by 100
so that it loosely represents the percent error) of Eq. (12) when used to represent the
Watson distribution (with A = 1). Because the error is low (<5%) for all combinations
of ∆ and δE, we conclude that Eq. (12) is a reasonable approximation for the intensity of
Watson-distributed fluorescent ensembles.

(Fig. 2(A)), which has polar angle Θ and azimuthal angle Φ such that

m̂ = Rz(Φ)Ry(Θ)ẑ. (7)

We will derive mathematical equations that can be used to calculate orientation from intensity
values using two simplifying assumptions. We will later relax these assumptions to understand
the extent to which they reduce the accuracy of this technique.
Assumption 1: We first assume that δµ is a fixed constant such that fluorophore orientation

is restricted to a cone centered on m̂ (Fig. 2(D)). In this scenario, the ensemble average δµ
value, which we denote in this work as ∆, is the same as the half angle of the cone (Fig. 2(D)).
This assumption, which simplifies the forthcoming mathematics, is a reasonable approximation
of many physically-relevant scenarios. For example, the commonly used fluorophore DiI has
two lipid tails that readily insert into plasma membranes such that the transition dipole moment
can rotate freely parallel to the plasma membrane. In this scenario, m̂ is normal to the plasma
membrane and ∆ ≈ 75◦ [14,35].
Assumption 2: Second, we assume that each fluorophore’s rotational time constant is much

shorter than the fluorescence lifetime. This assumption simplifies mathematics by removing
the orientation dependence of fluorescence emission on the measured ensemble intensity. Put
another way, if a fluorophore’s orientation within the cone is randomized between excitation and
emission, then the effects of the orientation-dependence of emission will be equivalent for all
orientations of E. It follows that, under this assumption, changes in fluorescence intensity will
result strictly from changes in the orientation of E.
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We also make three minor assumptions: first, we assume that photobleaching is negligible –
which is reasonable for densely labeled samples that are excited with low power. Second, we
assume that other time-dependent photophysical effects such as blinking are negligible, which is
reasonable for ensembles of fluorophores where these effects can be averaged out and lumped
in with the orientation-independent Q term. Finally, we assume and that the transition dipole
moment for emission is parallel to the transition dipole moment for excitation (µ), which is
reasonable for most fluorophores. Unlike with assumptions 1 and 2, we do not study the effect
of these assumptions within this work. However, we note that photobleaching corrections can
be applied to densely labeled samples that do undergo meaningful photobleaching. We also
recommend avoiding the use of fluorophores with non-parallel emission and excitation transition
dipole moments for future implementations of this technique.
Using these assumptions, the intensity of an ensemble of fluorophores can be expressed in a

relatively simple manner:
Iens = A ∫Ω PensI dµ (8)

where Pens is a probability density function describing the relative contributions of all possible
orientations of µ to the ensemble, A is a scaling constant that combines factors such as the
average detection efficiency, quantum yield, the number of fluorophores, and the intensity of the
excitation light, and ∫Ω dµ denotes integration across all possible orientations of µ.

Next, we consider the local k-l-m coordinate system centered on m̂ (Fig. 2(B),(C)). The k-l-m
unit basis vectors can be obtained by rotating the unit basis vectors of the global x-y-z coordinate
system:

[k l m] = Rz(Φ)Ry(Θ)[x y z]. (9)

Within this coordinate system we can re-write Eq. (1) using the angular representation of the dot
product and apply ensemble averaging as shown in Eq. (8):

Iens = A ∫Ω (cos(δE) cos(δµ) + sin(δE) sin(δµ)cos(γµ − γE))2dµ (10)

where δµ, γµ and δE , γE are the local polar and azimuthal angles of µ and E, respectively (Fig.
2(B),(C)). Expanding the square in Eq. (10), we obtain

Iens = A
∫
Ω

©«
cos2 (δE) cos2

(
δµ

)
+ cos (δE) cos

(
δµ

)
sin (δE) sin

(
δµ

)
cos
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)
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(
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)
cos2

(
γµ − γE
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Consider assumption 1 in which a cone of fluorophores is centered on m̂ such that δµ is a fixed
constant ∆. In this scenario, Pens is an impulse function that is nonzero only when δµ = ∆.
Because E is static during an acquisition and ∆ is constant, γµ is the only variable in Eq. (11)
which must be integrated over to calculate the intensity of a conical ensemble (Icone). When
integrating γµ from 0° to 360°, the second term becomes zero and the third term becomes
sin2(∆)sin2(δE)/2, yielding:

Icone = A
(
cos2(∆) cos2 (δE) +

sin2(∆) sin2 (δE)

2

)
. (12)

Note that δE represents the angle between E and m̂ and, as such, is analogous to Ψ in Eq.
(1). Additionally, note that this equation denotes separation of the ensemble into two simple
components: a uniformly sampled disk perpendicular to m̂ and a dipole parallel to m̂ (Fig. 2(D)).
These two components are combined in a weighted average wherein the weights depend strictly
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on ∆ (Fig. 2(E)). Accordingly, Eq. (12) can be re-written as:

Icone = Idipolecos2(∆) + Idisksin2(∆) (13)

where Idipole is the ensemble intensity (for given orientations of E and m̂) when ∆ = 0 and Idisk
is the ensemble intensity when ∆0 = 90◦. Note that this last point assumes equal detection
efficiencies of the two ensembles, which will not always be true even with assumption 2.

2.2. Fluorescence intensity of a Watson ensemble

We next tested the necessity of assumption 1 by testing whether Eq. (12) is reasonable for the
description of other axially-symmetric distributions. Specifically, we evaluated the use of Eq.
(12) to represent fluorophores with orientations distributed according to the Watson distribution.
The Watson distribution is an angular analog of the Gaussian distribution (Fig. 2(D)) and is
defined by the probability density function (PWatson):

PWatson = C exp(κ(µ̂ · m̂)2) = C exp(κcos2(δµ)) (14)

where κ is the concentration parameter and C is a normalization constant:

C = 1
∫Ω exp(κ cos2(δµ))dµ

. (15)

Vectors randomly sampled from a Watson distribution will be concentrated around the axis m̂
when κ>0 or around the equator perpendicular to m̂ (in what is called a “girdle” distribution)
when κ<0. The extent to which the distribution is concentrated parallel to or perpendicular to m̂
depends on the magnitude of κ. According to Eqs. (8) and (14), the intensity of fluorophores
distributed via the Watson distribution can be computed using integration:

IWatson = A ∫Ω PWatson cos2(Ψ)dµ . (16)

The parameter κ is directly related to ∆ in a manner that can also be calculated through integration:

∆ = A ∫Ω δµPWatsondµ . (17)

Performing this integration reveals a direct relationship between κ and ∆ that can be used to
assess the extent to which Eq. (12) can be used to approximate the intensity of Watson-distributed
fluorescent ensembles. While the integrations in Eqs. (15)–(17) are not easy to perform
analytically, they are trivial to perform numerically. We accomplished numerical integration by
generating 30,000 unit vectors that are roughly equally sampled from a unit sphere (using the
SpiralSampleSphere technique [36]) and replacing ∫Ω dµ in Eqs. (15)–(17) with the summation
operator. Taking the difference between Eqs. (12) and (16) with A = 1 (Fig. 2(F)) reveals a very
small difference (<5%) across the entire range of possible δE and ∆ combinations, thus revealing
that Eq. (12) is, in fact, a reasonable approximation for Watson-distributed fluorescent ensembles.
In section 3.4, we will further test the truth of this conclusion using Monte Carlo simulations.
We will also consider the effect that arises from relaxing assumption 2 for both the Watson and
conical distributions.

While we will not go into more sophisticated axially-symmetric distributions in this work, we
also note that the intensity of any arbitrary axially-symmetric distribution can be calculated by
treating the distribution as a summation of many cones and integrating over Eq. (5).

Iax = A ∫
π
2

0 Γcone(∆,Θ)Icone(δE,∆)p(∆)d∆ (18)

where Γcone(δE,Θ) is a scaling factor that accounts for the ∆- and θ0-dependence of ensemble
detection efficiency and p(∆) is a probability density function denoting the shape of the orientation
distribution.
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In addition, we note that when ∆ = tan−1
√
2 ≈ 54.7◦ (also known as the “magic angle”)

intensity ceases to depend on E’s orientation because dI/dΨ = 0. We therefore predict that
VALiD loses accuracy as ∆ approaches the magic angle.

2.3. Microscope configurations

Below, we present three microscope configurations that could be used to implement VALiD.
These three configurations exhibit qualitative differences in the set of measurement vectors that
they can produce. We use a Monte Carlo simulation method – described below – to determine
how well each configuration can be used to measure properties of simple axially symmetric
fluorescent ensembles.
Configuration 1, which was described above, is the simplest implementation of VALiD,

wherein α is fixed at α = α0 and N images are acquired at β values equally spaced between −60◦
and 60◦. We used a 60◦ cutoff because higher incidence angles will result in a large proportion
of excitation light being reflected at the sample-coverslip interface and may result in distortions
to the polarization state and/or spatial profile of the excitation light.
Configuration 2 is similar to config. 1; N − 1 images are acquired at varying β values

with α = α0. In addition, a single image is taken with α = 90◦ and β = 0◦. In practice, this
configuration can be implemented by adding an appropriately oriented polarization modulator
that can be manually inserted into and removed from the path of the excitation beam. Config. 2
is intended to overcome some of the specific limitations of config. 1 by adding an additional
measurement vector that is not restricted to the E cone.
Configuration 3 allows both β and α to vary freely and can be implemented using an

electronically controlled polarization modulator (e.g. a HWP mounted in a rotational actuator or
Pockels cell). This configuration is expected to maximize the spread of the vectors to equally
cover the entire unit sphere. To simulate E in this configuration, we generated 4N − 3 vectors
equally distributed on the unit sphere using the SpiralSampleSphere method [36] and then
discarded all vectors except for those with polar angles between 30◦ and 90◦. As such, this
approach mimics the situation where the maximum β angle is 60◦.
While these configurations are all based on a though-the-objective TIRF-style microscope

wherein the excitation beam is tilted within a single plane of incidence, VALiD could also be
implemented using alternative instruments such as azimuthal scanning fluorescence microscopes
[37].

2.4. Monte Carlo simulation method

We used a Monte Carlo simulation method to evaluate each configuration over a range of
experimental parameters. To summarize this method, we generate simulated intensity data for
a given fluorescent ensemble and set of measurement vectors, add noise to the intensity data,
and then use least-squares residual fitting to measure the best-fit orientation of the ensemble’s
symmetry axis (Fig. 3(A)). We then repeat this process many times to measure the average
accuracy of a given set of measurement vectors for a given fluorescent ensemble. This process
is then repeated for a representative set of symmetry axis orientations to measure the overall
performance of a set of measurement vectors. Finally, we repeated this entire process for different
microscope configurations and different types of ensembles. The Monte Carlo algorithm is
described in greater detail below. Least-squares residual fitting is performed using a two-layer
lookup table approach. Steps 1-3 of the algorithm describe initialization of the lookup table.
Steps 4-6 describe the process used for a single measurement simulation, and steps 7-9 describe
various repetitions used to evaluate a wide parameter space.

1. Create the first layer of the lookup table by generating a representative set of 360 m̂ vectors
equally-spaced on a unit hemisphere (using the SpiralSampleSphere function [36]) and
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Fig. 3. (A) Depiction of a single iteration of the Monte Carlo algorithm used for error
estimation: Iideal is calculated with Eq. (12) for a given set of Θ, Φ, ∆, and A values
(the curve shown was calculated with Θ = 30◦, Φ = 40◦, ∆ = 0◦, and A = 1). Noise is
then added to the calculated Iideal values, and then the true orientation is fit to the noisy
data. Finally, the angular error (ε) of the best-fit orientation is calculated. (B-M) Monte
Carlo simulation outputs collected with ∆ = 0◦, α0 = 30◦ (when applicable), and A and ∆
treated as known parameters. (B-D) Representative heatmaps of orientation measurements
for a given true orientation denoted by x (Θ = 40◦, Φ = 45◦) with A × N = 700 for (B)
configuration 1 with N = 4 (C) configuration 2 with N = 4, and (D) configuration 3 with
N = 7. The x may appear to deviate from the maximum likelihood measurement due to
artifacts associated with data display. (E-M) Surface plots showing the (E-G) average error
(〈ε〉), (H-J) error anisotropy (σ), and (K-M) error ellipses as a function of orientation with
A × N = 1, 000 for (E, H, K) configuration 1 with N = 5, (F, I, L) configuration 2 with
N = 5, and (G, J, M) configuration 3 with N = 10. All surface plots have black dots showing
intersection of the unit sphere with the z-axis (top dot), x-axis (bottom left dot), and y-axis
(bottom right dot) and the plots in (B-J) have a black circle showing the intersection of the
unit sphere with the x-y plane.
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calculating ideal intensity (Iideal) values for each using Eq. (12). For each orientation,
N intensity values are calculated (one for each of the measurement vectors). The set of
measurement vectors is defined by the user-specified microscope configuration and the
user-specified parameters N and (for configs. 1 and 2) α0. Iideal calculations also depend
on the user-specified parameters A and ∆.

2. Create the second layer of the lookup table by calculating ideal intensity values for 36,000
equally spaced orientations in a similar fashion.

3. Connect the two layers of the lookup table; for each orientation in first tier, generate a list
of the 200 most similar orientations in the second tier.

4. For a given orientation, add photon noise to obtain Inoise. Photon noise is Poisson distributed
and if we assume that 1 intensity unit corresponds to 1 photon and that Iideal � 0 then
it can be modeled as normally-distributed with a standard deviation that is equal to the
square-root of Iideal due to the central limit theorem. Photon noise is also compounded by
a background noise term (Ibkrd) that is common for fluorescence microscopy and arises due
to myriad factors including thermal activation of camera photodetectors and nonspecific
fluorescence from the background. As such, Inoise can be described using common notation
for Normal distributions:

Inoise ∼ Normal
(
Iideal,

√
Iideal + Ibkrd

) (19)

where the first argument of Normal() denotes the expected value and the second argument
denotes the standard deviation of the random variable. We used Ibkrd = 200 to mimic
values that we have observed in recent experiments [2].

5. Use least-square residual fitting to find the best-fit orientation in the first layer of the lookup
table. Then, find the best-fit second-layer orientation from the 200 linked orientations. For
both sets of calculations, the best-fit (m̂∗) is defined as the orientation that produces the
lowest sum-squared error of all N intensity measurements:

m̂∗ = argmin
m̂

(
N∑
i=1
(Inoise − Iideal)2

)
(20)

where Iideal is a function of m̂. In cases where multiple distinct orientations produced
the exact same sum squared error, a single best-fit was randomly selected from the set.
This approach enables a solid-angle resolution of 360◦2 × (36, 000)−1 = 0.01◦2 while only
requiring 360 + 200 = 560 comparison calculations per iteration.

6. Calculate angular error (ε) between the best-fit second tier and the true orientation:

ε = cos−1(|m̂ · m̂∗ |) . (21)

7. Repeat steps 4-6 for n =30,000 Monte Carlo iterations and calculate the average angular
error, 〈ε〉:

〈ε〉 = 1
n

n∑
j=1
εj . (22)

This large number of iterations ensures that the calculated 〈ε〉 value has converged. We
also calculate the error anisotropy, as described below in 2.4.

8. Repeat steps 4-7 for each of 360 representative orientations of m̂ and calculate assessment
metrics (described below) for the set of measurement vectors defined in step 1.
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9. Repeat steps 1-8 for a range of parameter values. We performed several different types of
parameter sweeps that will be described in greater detail below.

We evaluated the accuracy of configs. 1-3 under different fitting conditions; Θ and Φ were
always treated as unknown fit parameters, but A and ∆ were optional additional unknown fit
parameters. The situation where A is known prior to acquisition is not experimentally practical.
As such, these simulations were primarily run to isolate fundamental characteristics of the
orientation measurement process. When A was an additional unknown parameter, each set of
Iideal lookup table values (steps 1-2) or Inoise values (step 4) was normalized to the average of
the set. When ∆ was an additional unknown parameter, step 5 was repeated 31 times (one for
each 3◦ increment of ∆ from 0◦ to 90◦) and the best of the 31 best-fits was selected. Note that
∆ could be estimated prior to VALiD acquisition using a variety of techniques or via existing
reports in the research literature. For instance, fluorescence anisotropy techniques have been
used to estimate ∆ for DiI in supported lipid bilayers as ∼75° [14,35].

To maintain a consistent SNR when comparing sets of measurement vectors with different N,
we defined A ×N as a proxy for the “total photon count”. This definition imposes a tradeoff with
increasing N between the benefit obtained by using more measurement vectors and the cost of
decreasing the SNR for each individual intensity measurement.

2.5. Monte Carlo simulation assessment metrics

In addition to quantifying the average error for each orientation, we also quantified the error
anisotropy. In this context, we define error anisotropy as the tendency of noise to bias orientation
measurements preferentially towards some orientations. We agree with Chandler et al. that the
ideal technique should be able to “reconstruct the orientation with a small and nearly uniform
uncertainty” for all orientations [16]. Substantial error anisotropy is likely to result in systematic
errors and “sink” orientations that will be measured more commonly than others. For example,
estimation of θ using FDLD with Eq. (2) results in fluorescent ensembles with low θ angles being
systematically over-estimated [2]. In this case, θ overestimation occurs because noise generally
increases the amplitude of a best-fit sinusoid, particularly when the amplitude of the true sinusoid
is very small. In other cases, high error anisotropy may have other causes. Regardless of the
underlying cause, our Monte Carlo simulation method allows us to quantify error anisotropy in a
context-independent manner.
Error anisotropy can be roughly visualized by analyzing the distribution on a unit sphere

of 30,000 measured orientations for a given true orientation of m̂. When error is anisotropic,
measurements will be concentrated along a given direction (e.g. around a given γ angle) on
the unit hemisphere and the density map will resemble an elliptical Gaussian. When error is
isotropic, measurements will be uniformly distributed around the true orientation and the density
map will resemble an isotropic Gaussian. Figures 3(B) and 3(D) show examples of anisotropic
and isotropic errors, respectively. Error anisotropy (σ) can be quantified by fitting the distribution
of measured orientations to an uncertainty ellipse. This calculation is performed by assembling
the k and l components of all measured m̂∗ values into two “component vectors”, (denoted K
and L, respectively, where each is a n × 1 vector) calculating the covariance matrix (C) of these
component vectors:

C = cov(K,L), (23)

and then subtracting the ratio of the two eigenvalues of the covariance matrix (λ1 and λ2, where
λ1>λ2) from 1:

σ = 1 − λ2
λ1
. (24)
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Measurement error that is perfectly anisotropic (with measurements lying purely on one circle of
the unit sphere or, equivalently, all coincident with a single plane) results in σ = 1. In contrast,
perfectly isotropic error results in σ = 0.

After calculating 〈ε〉 and σ for each of 360 representative orientations, we then calculated five
assessment metrics that together reflect the performance of a given set of measurement vectors
for a given pair of A and ∆ parameters. Those metrics are the average and maximum of the 360
calculated 〈ε〉 values (〈ε〉mean and 〈ε〉max), the average and maximum of the 360 calculated σ
values (σmean and σmax), and finally an “overall quality” metric q, where

q = (60◦)2(〈ε〉mean〈ε〉maxσmeanσmaxN)−1 (25)

is the product of the four other assessment metrics and N, as well as a scaling constant. This
scaling constant makes q dimensionless and normalizes q to the theoretical maximum values for
〈ε〉mean and 〈ε〉max (both 60◦, corresponding to randomly sampled m̂∗ vectors). This formulation
reports on the overall measurement quality because in an ideal scenario all of the multiplied terms
would be minimized. N was added as a multiplier on the rationale that increasing N increases
the amount of time required for a full set of acquisitions, and faster acquisitions are generally
favorable. We nonetheless view 〈ε〉max as the most important of the five metrics because the
original objective of this work (to determine microscope configurations that can measure all
orientations accurately and non-degenerately) will only be achieved if 〈ε〉max is low. As such, the
other four assessment metrics are only informative if 〈ε〉max is low.

3. Results

3.1. Initial configuration assessment

We first ran representative Monte Carlo simulations for configs. 1, 2, and 3 to obtain a qualitative
understanding for the contexts in which each configuration could be reasonably used. For our
initial assessment, we set ∆ = 0, α0 = 30◦ (for configurations 1 and 2), Θ = 40◦, and Φ = 45◦.
We also set A × N = 700, which is an experimentally relevant value that would be expected for
an ensemble consisting of a few dozen fluorophores. (This value is also somewhat low, ensuring
that the effect of noise is meaningful). We treated both A and ∆ as known parameters. A quick
interpretation of Eq. (12) suggests that at least four measurement vectors must be used to achieve
Nyquist sampling. Therefore, for configurations 1 and 2 we used N = 4 measurement vectors.
For config. 3, we used N = 7 measurement vectors to obtain more uniform sampling. We ran
n = 30, 000 iterations under these conditions and plotted errormaps showing the probability
of measuring any given orientation when the true orientation is fixed (Fig. 3(B)–(D)). As
expected, we see a single node of measured orientations centered around the true orientation, thus
confirming that all three configurations can achieve nondegenerate orientation measurement. (As
a control, we ran the same process with N = 4 for FDLD and observed two nodes separated by a
180◦ rotation around the z-axis, not shown). Noise results in deviations from the true orientation
such that 〈ε〉 is somewhat consistent between the three configurations (11.0◦ for C1, 7.9◦ for
C2, and 8.2◦ for C3). However, the orientational nature of these deviations vary; for config. 3,
error is highly isotropic (σ = 0.19), producing measurement errors that are equally probable in
all directions (Fig. 3(D)). For configs. 1 and 2, error is highly anisotropic (σ = 0.85 and 0.64
respectively – Fig. 3(B), (C)). These results suggest that spreading the measurement vectors
across a wide variety of orientations shields against error anisotropy. These results are also in
line with recent theoretical analyses [38].
We next varied m̂ across a representative set of 360 orientations and measured how σ and
〈ε〉 vary as a function of orientation for all three configurations. For these simulations we used
A × N = 1, 000 and ∆ = 0◦ and treated A and ∆ as known parameters. For configs. 1 and 2 we
used N = 5 and α0 = 30◦, and for config. 3 we used N = 10. Unit sphere colormaps are shown
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in Fig. 3(E)–(J). To show the nature of error anisotropy across the entire unit sphere, we also
plotted error ellipses for 100 representative orientations where the orientation of each ellipse
shows the primary orientation of measurement error and the lengths of the major and minor axes
are proportional to

√
λ1 and

√
λ2, respectively (Fig. 3(K)–(M)).

These results provide a more detailed depiction of measurement error; 〈ε〉 depends heavily on
orientation for config. 1 (Fig. 3(E)), ranging from 5.4◦ to 〈ε〉max = 25.0◦ (with 〈ε〉mean = 11.9◦).
Generally, orientations that are proximal to the half-cone of measurement vectors are measured
much more accurately, while orientations that are further from the half-cone are measured less
accurately because they are poorly excited. Config. 1 also produces highly anisotropic error
for nearly all m̂ orientations, with σmean = 0.84 and σmax = 0.96 (Fig. 3(H), (K)). Config. 2
generally is associated with lower error, with 〈ε〉max = 13.1◦ and 〈ε〉mean = 7.0◦ (Fig. 3(F)).
Config. 2 also produces lower error anisotropy, with σmean = 0.60 and σmax = 0.96, than config.
1 (Fig. 3(I), (L)). Measurement of many m̂ orientations is improved with config. 2, but some
orientations – particularly, those that are close to the x-y plane – exhibit relatively high error and
measurement anisotropy. These results suggest that the additional measurement vector parallel to
the y-axis is sufficient to mitigate some, but not all, of the shortcomings associated with config.
1. In contrast, config. 3 exhibits low error (〈ε〉mean = 7.4◦ and 〈ε〉max = 9.1◦) and relatively low
error anisotropy (σmean = 0.44 and σmax = 0.75) across all orientations (Fig. 3(G), (J), M).
The improved performance of config. 3 (q = 5.10) over config. 1 (q = 0.83) and config. 2

(q = 3.82) further demonstrates the benefits of spreading the set of measurement vectors out to
cover a wider range of orientations. However, the improved performance comes at the cost of
increasing complexity of the microscope system. It is worth noting that these simulations were
performed with a relatively low SNR (only a few hundred photons per intensity measurement),
and the issues with configs. 1 and 2 may not be as prominent at the higher SNR values that will
often be accessible for densely labeled samples.

3.2. Optimization of VALiD parameters

We next sought to determine optimized N and α0 values for each of the three configurations. As
stated above, increasing N adds more unique measurement vectors, but also reduces the SNR of
each measurement (when A × N is held constant) and increases the amount of time required to
obtain a full set of measurements. To determine optimal parameters, we used the Monte Carlo
strategy described above to calculate the assessment metrics as a function of N for configs. 1, 2,
and 3 with A ×N held constant and α0 = 30◦ (when applicable). We also performed simulations
for configs. 1 and 2 with α0 ranging from 0◦ to 90◦ with N = 5. As a control, we ran simulations
of FDLD with varying N, in which there are N distinct α values ranging from 0 to (N − 1) × 180◦
and β = 0◦. For these simulations we selected A × N = 3, 000, set ∆ = 0◦, and ran simulations
with different sets of unknown parameters. Optimal N and α0 values were defined as the values
that maximized q. Our results are shown in Fig. 4. Assessment metrics at optimized conditions
are summarized in Table 1.
We observed failure, which we define as occurring when 〈ε〉max ≥ 45◦, for FDLD in all

scenarios due to the four-fold degenerate nature of FDLD measurements. This finding was
expected, thus partially validating our simulation approach. Config. 1 performed well only
when A and ∆ were known, and the optimal condition was N = 4 and α0 = 30◦. Config. 1
performed poorly when A was treated as an unknown parameter and failed when ∆ was unknown.
This failure was likely due to specific degeneracies that arise when constraining E vectors to a
half-cone. One such degeneracy is between the case where m̂ is parallel to the y-axis and the
case where ∆ = 54.7◦, both of which produce intensity values that are invariant with respect to β.
When A and ∆ were known, performance was relatively insensitive to α0 over a range of values
from ∼20◦ to 45◦. For config. 1, error anisotropy was always high. Taken together, these results
suggest that config. 1 can be used with caution when N = 4 and α0 ≈ 30◦ when ∆ is known,
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Fig. 4. Results of Monte Carlo simulation-based optimization. We refer readers to section
3.2 for a more detailed description of the results shown here. Each subplot contains three
curves showing five assessment metrics (section 2.4) as a function of the number of images
(N) or the measurement vector cone angle (α0). Blue curves show results when both A and
∆ were known, green curves show results when ∆ was known and A was unknown, and
red curves show results when both A and ∆ were unknown. Simulations were performed
with A × N = 3, 000 and ∆ = 0 with all integer values of N ranging from 3 to 20 (left four
columns) and 5◦ increments of α0 ranging from 0◦ to 90◦. When testing for optimal N,
α0 = 30◦ was used. When testing for optimal α0, N = 5 was used. To summarize the results,
FDLD always fails due to measurement degeneracy, config. 3 always performs better than
configs. 1 or 2, and config. 2 always performs better than config. 1. Configs. 1, 2, and 3
were found to have N = 4, 5, and 6 optimal, respectively, regardless of the number of free fit
parameters. Configurations 1 or 2 were generally found to have an optimum of α0 = 30◦,
although in some cases the α0 = 25◦ or α0 = 35◦ exhibited an up to 1% increase in quality
(q) over the α0 = 30◦ condition.
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Table 1. Optimal experimental parameters and assessment metrics under optimal conditions.

Φ and Θ unknown Φ, Θ, and A unknown Φ, Θ, A, and ∆ unknown

Configuration # 1 2 3 1 2 3 1 2 3

Optimal N 4 5 6 4 5 6 - - 6

Optimal α0(°) 30 25 - 30 35 - - - -

〈ε〉max (◦) 7.1 5.1 3.3 20.2 8.3 4.3 45+ 43 8.6

〈ε〉mean (◦) 3.5 2.7 2.5 7.4 3.8 3.1 - - 6.6

σmax 0.98 0.96 0.79 0.98 0.96 0.84 - - 0.97

σmean 0.77 0.55 0.5 0.94 0.66 0.68 - - 0.74

q 47.7 99.3 181.5 6.6 35.6 79.5 1.1 1.9 14.9

but that config. 1 should not be used when ∆ is unknown. While prior knowledge of A helps to
improve accuracy, it does not improve error anisotropy and so results obtained using config. 1
should also be assumed to exhibit anisotropic error. Furthermore, due to inherent variability in
fluorescent samples, accurate estimation of A is impractical without additional acquisitions with
non-polarized light or with E vectors that are not restricted to the cone of measurement vectors –
as is exactly the case with config. 2.

Config. 2 demonstrated improved performance over config. 1. The optimal N value increased
to 5, with 〈ε〉mean, 〈ε〉max, σmean, and σmax all increasing monotonically with N when N>5. This
unit increase in N means that the optimal acquisition for config. 2 is the same as the optimal
acquisition for config. 1, but with one additional measurement vector (with α = 90◦ and β = 0◦).
Unlike config. 1, config. 2 performed well when Awas added as an additional unknown parameter.
This finding suggests that config. 2 is inherently well-suited for simultaneous estimation of A
and orientation, which is attractive for practical purposes. However, although config. 2 exhibits
slightly lower error anisotropy than config. 1, it still exhibits substantial error anisotropy for
all N and, as such, this configuration should also be used with a degree of caution. Config. 2
essentially failed (with 〈ε〉max near 45◦) when ∆ and A were both unknown. Accordingly, our
results suggest that config. 2 is well suited towards orientation measurement when ∆ is known,
but not when ∆ is unknown. Optimization of α0 showed that α0 = 25◦ is optimal when A and
∆ are known and α0 = 35◦ is optimal when A is unknown and ∆ is known. However, as with
config. 1 we found that performance was relatively insensitive to α0 over a range of values from
∼20◦ to ∼45◦, and in both cases the optimal q was <1% higher than q when α0 = 30◦. As such,
we can reasonably conclude that α0 = 30◦ is optimal for both config. 1 and config. 2. It is not
immediately clear why α0 = 30◦ is optimal, but we note that 30◦ is the angle that minimizes the
average angular difference between all orientations and the cone of measurement vectors (shown
in Fig. 1(D)).

We observed the best performance with config. 3, for which there was another unit increment
in the optimal number of measurement vectors to N = 6 (the specific set of [α, β] values was
[152◦,−34◦], [20◦,−12◦], [115◦, 0◦], [158◦, 6◦], [58◦, 34◦], [118◦, 59◦]). Unlike with configs. 1
and 2, config. 3 did not fail when both ∆ and A were treated as unknown parameters. Config. 3
was also unique in that increasing N beyond the optimum of 6 generally caused σmean and σmax to
decrease. While increasing N came with the cost of increased 〈ε〉mean and 〈ε〉max, the increase in
error was modest. For example, when A was unknown and ∆ was known, increasing N from 6 to
20 caused σmax to decrease from 0.84 to 0.73, while 〈ε〉max increased from 4.3◦ to 6.0◦. However,
the benefit of increasing N was less pronounced when both ∆ and A were unknown; in the cases
where ∆ was known, σmax trended toward ∼0.7, but when ∆ was unknown, σmax trended towards
∼0.94. The similarity in the two σmean vs. N curves when A was unknown suggests that only a
small subset of orientations exhibited highly anisotropic error when ∆ was unknown, potentially
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due to specific degeneracies that arise when ∆ is added as an additional free parameter. Together,
these results suggest that 1) config. 3 can be used to obtain accurate orientation measurements, 2)
reasonably isotropic orientation measurements can generally be obtained when ∆ is known, and
3) the error anisotropy can be decreased – to an extent – at the cost of slightly reduced accuracy
by increasing N. These results also suggest that anisotropic error is a fundamental issue with
VALiD that will be difficult to fully address for practical scenarios when A is unknown. However,
we note that when the error is very low the fact that it is highly anisotropic has little practical
relevance.

3.3. VALiD accuracy as a function of total photon count

To assess the manner in which the quality of VALiD-based orientation measurement scales with
SNR, we measured 〈ε〉max and σmax with A × N values ranging from 102 to 105 for all three
configurations using optimized conditions (N = 4, α0 = 30◦ for config. 1, N = 5, α0 = 30◦ for
config. 2, and N = 6 for config. 3) and ∆ = 15◦. We ran these simulations under two fitting
conditions: with A unknown and ∆ known, or with both A and ∆ unknown (Fig. 5(A)). The
results display principles discussed above: All configs. can accurately measure orientation when
∆ is known and SNR is high; config. 2 is much more accurate than config. 1; and config. 3 is
substantially more accurate than config. 2; only config. 3 can measure orientation when ∆ is
unknown (although at extremely high SNR config. 2 appears to perform satisfactorily) and σmax
is generally close to 1, except when ∆ is known for config. 3.

If we define a cutoff photon count (A × N)cutoff as the A ×N value that results in 〈ε〉max ≈ 10◦,
we observe (A × N)cutoff = 18, 900, 4,200, and 2,000 for configs. 1, 2, and 3 respectively when
∆ is known. When ∆ is unknown (A × N)cutoff = 3, 200 for config. 3 and (A × N)cutoff>105 for
configs. 1 and 2.
For config. 3 with ∆ unknown, 〈ε〉max converges to ∼6.1◦ (rather than 0◦, as expected)

with increasing A × N values. We expect that this convergence is an artifact of our lookup
table-based fitting algorithm, rather than an outcome of specific degeneracies. As such, future

Fig. 5. VALiD performance as a function of A × N and ∆. (A) 〈ε〉max (top) and σmax
(bottom) as a function of A × N with ∆ = 15◦ for config. 1 with N = 4 and α0 = 30◦ (red,
squares), Config. 2 with N = 5 and α0 = 30◦ (green, circles), and config. 3 with N = 6
(blue, triangles) with A treated as an unknown fit parameter and ∆ known (solid curves) or
∆ unknown (dashed curves). (B) 〈ε〉max as a function of A × N and ∆ for config. 3 with
N = 6, A unknown, and ∆ known. Black curves show contours where error is 30◦, 10◦, 3◦,
and 1◦. Simulations were performed with ∆ varying in 2.5◦ increments from 0◦ to 90◦, and
with 40 A × N values distributed logarithmically from 102 to 105.
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implementations of VALiD may be improved by alternate fitting methods. For example, it may
be possible to derive analytical methods for fast best-fit calculations that are stable against noise.
Alternatively, following the lookup table method with gradient descent optimization may help
the fitting algorithm converge to the global optimum.
We next simulated 〈ε〉max as a function of A × N and ∆ with config. 3, N = 6, A unknown,

and ∆ known (Fig. 5(B)). For computational tractability, we reduced the number of Monte Carlo
iterations per orientation to n = 1, 000 and reduced the number of simulated orientations per
condition to 120. Our results show that error is always negatively correlated with A × N. As
predicted, we also see that error increases monotonically as ∆ approaches the magic angle of
∼54.7◦. Through parameter fitting to the 10◦ contour line, we find that the relationship:

log10 ((A × N)cutoff ) =
3.3

√
∆ − 54.7◦

+ 2.7 (26)

is a reasonable approximation (R2>0.99), both when ∆>54.7◦ and when ∆<54.7◦. This
relationship suggests that, under these conditions, a minimum of A ≈ 233 is acceptable when
∆ = 0◦. This level of signal (∼700 total photons detected photons per set of N = 6 intensity
measurements if cos2(δE)=0.5, on average) is low enough to enable imaging even at the single
molecule level.

3.4. Accounting for non-conical distributions and orientation-dependence of emission

We close out our simulation-based analysis by evaluating the effect that lifting assumptions 1
and 2 has on orientation estimation. Specifically, we generated maps of 〈ε〉max as a function of ∆
and A × N as described above for Fig. 5(B) under three conditions that we call “static cone”,
“mobile Watson”, and “static Watson”. For these simulations, we used config. 3 with N = 6,
∆ known, and A unknown, and calculated Iideal using condition-specific methods as described
below. We assess error when reference curves are calculated either with assumptions 1 and 2
(Eq. (12)) or with the same condition specific techniques used to calculate Iideal. By running
simulations in this way, we assess problems that may arise if Eq. (12) is used in situations where
assumptions 1 and 2 do not hold true, as well as the extent to which these problems can be
corrected by using appropriate calculation methods for orientation fitting.
The static cone condition relaxes assumption 2, which states that fluorophore orientation

randomizes within the probability distribution between excitation and emission. Instead, the
opposite situation, wherein fluorophore orientation does not change at all between excitation
and emission, is made. Under this condition, Eq. (12) no longer holds true because the
orientation-dependence of emission will also modulate intensity. The mobile Watson condition
relaxes assumption 1 and assumes that fluorophores are distributed according to the Watson
distribution, rather than a conical distribution, as described in section 2.2. The static Watson
condition relaxes both assumptions 1 and 2 by assuming that fluorophores are both distributed
according to the Watson distribution and do not re-orient between excitation and emission.
To develop a means of calculating Iideal for the static cone condition, we first calculated the

expected collection efficiency (the fraction of emitted photons collected by the microscope) for a
static fluorophore as a function of θ. For these calculations, we accounted for 1) the anisotropic
nature of fluorescence emission, wherein the intensity of fluorescence emission is strongest in
directions perpendicular to µ and decreases in a sin2 fashion to 0 in directions parallel to µ, 2)
the limited collection angle of a microscope objective, and 3) partial reflection of emitted light
at the sample-surface interface (the polarization of all emitted rays is perpendicular to the ray
and parallel to the plane made by the ray and µ). We also assumed that fluorophores were far
enough from the sample-coverslip interface to prevent near-field effects on emission. Running
these calculations we found that the collection efficiency of a fluorophore Γ was well described
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by the equation:
Γ = 0.16 + 0.05sin2(θ) (27)

when the index of refraction for the sample was 1.33 (the same as water), the index of refraction
for the coverslip was 1.515, and the numerical aperture of the microscope was 1.49 (although
the same result would be obtained with numerical aperture ≥ 1.33 because any rays entering
the coverslip at an incidence angle greater than sin−1(1.33/1.51) ≈ 62◦ will be totally reflected).
In other words, 16% of the light emitted by a fluorophore aligned with the z-axis is collected,
but for a fluorophore perpendicular to the z-axis that number increases to 21%. To calculate the
intensity of a static cone for a given ∆, m̂, and E, we generated 200 µ vectors equally spaced in a
cone centered on m̂ and then took the average of the I = Γ(E · µ)2 values. For the mobile Watson
condition, we calculated Iideal using Eq. (16) and numerical integration with 1,000 uniformly
distributed fluorophore orientations. For the static Watson condition, we used an updated form of
Eq. (16) that includes Γ:

IWatson =
A
C ∫Ω Γ PWatsoncos2(Ψ)dµ . (28)

The results of our simulations are shown in Fig. 6.
We found that for the static cone condition, 〈ε〉max increased by a few degrees for all ∆ and

A × N when the lookup table fit values were calculated assuming a mobile cone (using Eq.
(12)). This increase in error can be visualized by an outward shift of the contour lines in Fig.
6(A). Furthermore, error appeared to converge to non-zero values, which suggests that improper
application of assumption 2 can result in small systematic errors. Systematic errors were
eliminated and 〈ε〉max reduced back to the baseline level when reference curves were properly
calculated using the static cone model (Fig. 6(B)).
Similarly, the mobile Watson condition demonstrated increased 〈ε〉max and introduced sys-

tematic errors when lookup table values were calculated using a mobile cone assumption (Fig.
6(C)). The increase in error was more pronounced than in the static cone case and exhibited a
non-monotonic dependence on |∆ − 54.7◦ |. Again, error reduced to baseline when lookup table
values were calculated using Eq. (16), which corresponds to the mobile Watson condition (Fig.
6(D)). The same trends were observed for the static Watson condition, with the most pronounced
pre-correction increases in error of all three conditions (Fig. 6(E),(F)). Interestingly, in the
Watson distribution cases contour lines converged to ∆ ≈ 60◦, rather than the magic angle, when
corrected reference values were used (Fig. 6(D),(F)).
Together, these results show that failure to properly parameterize the fluorescent ensemble

under investigation may slightly reduce the accuracy of the ensemble. However, under all three
of the conditions tested systematic errors caused by improper parameterization were generally
minimal (<5◦); the 3◦ contour line substantially deviated from the static cone condition (Fig.
5(B)), but the 10◦ contour line did not. As such, we conclude that the effects of assumptions 1
and 2 on performance are likely minimal. While efforts should generally be taken to use accurate
models for calculations of Iideal, in many cases the amount of information about a fluorescent
ensemble is limited. In such cases, Eq. (12) can be used as a reasonable approximation for simple
axially symmetric fluorescent ensembles.
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Fig. 6. Surface plots showing 〈ε〉max as a function of ∆ and A × N when the underlying
ensemble can be represented by (A,B) a cone of fluorophores that do not reorient between
excitation and emission, (C,D) a Watson distribution wherein fluorophores re-orient between
excitation and emission, and (E,F) a Watson distribution wherein fluorophores do not
re-orient between excitation and emission. All simulations were performed with config. 3,
N = 6, ∆ known, and A unknown. Simulations were performed with reference intensity
values (A, C, E) calculated using the static cone assumption (Eq. (12)), or (B, D, F) corrected
in a manner that is specific to the true underlying distribution. Black contour lines are
specific to each surface plot, while red dashed contour lines are the same contour lines that
are present in Fig. 5(B) (static cone).

4. Discussion and conclusions

Herewe present an initial theoretical and computational exploration of a proposed technique, which
we call VALiD, to perform non-degenerate measurement of fluorescent ensemble orientation.
We present a mathematical model that can be used to fit the orientation of fluorescent ensembles
to sets of intensity measurements acquired using the VALiD approach. We present three potential
microscope configurations and optimal experimental parameters for each. We also present Monte
Carlo simulation-based estimates for the SNR level necessary to implement VALiD with high
accuracy.
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We chose to use this Monte Carlo simulation-based approach over analytical approaches for
several reasons. First, the Monte Carlo simulation algorithm described is simple and does not
rely heavily on analytical formulations. This simplicity could, in the future, enable extension of
the method to simulate more complex fluorophore orientation distributions that are not easy to
describe analytically. Second, the least-squares residuals process used to calculate orientation
from simulated intensity measurements resembles the process that would commonly be used
to process experimental data, thus allowing for an unbiased means of assessing the predicted
accuracy of VALiD under different conditions. Third, this approach enables the detection of
systematic errors arising from measurement degeneracies between orientations that are not
similar to each other. Nonetheless, future studies would likely benefit greatly in terms of
computational speed and fundamental insight from an analytical treatment. For example, analysis
of axially-symmetric distributions in terms of their second moment matrices [24,39] could
enable rapid matrix-based (rather than lookup table-based) orientation calculation. Similarly,
Cramer-Rao lower bound estimates may yield fundamental insight into the maximal expected
accuracy of VALiD under various conditions and prove crucial to optimization efforts [16,38].
The three tested configurations are only a few examples of microscope setups that can be

used to implement VALiD. For example, variants of VALiD could also be implemented using
light-sheet, structured illumination, and variable azimuthal incidence angle (rather than variable
inclination) microscope setups. Future efforts to implement VALiD would benefit from paired
error-estimation simulations, similar to those presented here, that consider specific aspects of the
microscope system and account for effects such as β- and α-dependent reflection of the excitation
laser at the sample-surface interface. Such simulations could help experimenters optimize their
experimental apparatus to maximize performance.
Practically, it will be necessary to correct for changes in the shape of the illumination profile

(i.e. by normalizing images to control images of randomly oriented fluorophores taken at
corresponding α and β values). Normalization should also account for the z-dependence of
excitation beam intensity; the lateral component of the beam’s propagation with nonzero β
will result in a z-dependence of |E|, particularly when the beam has a non-flat (e.g. Gaussian)
profile (although flat field illumination [40] could mitigate some of these issues). It may also be
necessary to account for slight changes in the E orientation of excitation light passing through
the coverslip-sample interface due to reflection at the interface, which is polarization-dependent
and can be accounted for using the Fresnel equations.
Note that a setup similar to the one we simulated is used for though-the-objective TIRF

microscopy, meaning that VALiD can be implemented on many TIRF microscopes with slight
modifications. Variable inclination microscopy techniques have been increasingly used in recent
years, including: variable-angle TIRF [41–43] and scanning angle interference microscopy [44],
both of which enable enhanced z-axis localization resolution; highly-inclined thin illumination
microscopy (HiLo) [45], which enhances signal-to-noise by restricting illumination to a thin
slice; variable-angle near-TIRF [46], which enables refractive index image mapping; and three-
dimensional optical polarization tomography, which enables orientation mapping of single static
fluorophores [17]. Accordingly, the proposed design is experimentally feasible.
While we have considered four types of ensembles (mobile/static, cone/Watson) and found

that the static cone assumption is somewhat reasonable for all of them, physical scenarios
will likely exhibit intermediate behavior such as partial fluorophore re-orientation between
excitation and emission or behave as wobbly cones. In some cases, optimization routines that
incorporate additional parameters may help to account for some of these properties. Constrained
optimization routines (e.g. treating ∆ as unknown but restricted to the range between 0◦ and
30◦) and/or combination with emission-splitting optical components may offer improvements in
accuracy and yield additional information about the type of fluorescent ensemble that is being
investigated. We have not explored the analysis of non-axially symmetric orientation distributions,
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axially symmetric distributions with less simple (e.g. multi-modal) shapes, or axially-symmetric
distributions with separate static and temporal components to their orientational heterogeneity
[47–49]. Future theoretical investigations, and potentially combination with techniques that
enhance orientational resolution (such as two-photon excitation microscopy [50,51]) may
enable resolution of arbitrarily complex orientation distributions. Combination of VALiD
with computational microscopy [52] or structured illumination [53] approaches may enable the
reconstruction of super-resolution images from VALiD acquisitions. However, fluorophores of
certain orientations will likely produce systematic biases in the observed spatial illumination
pattern, particularly when they are out-of-focus [54]. Accurately reconstructing such images with
high spatial resolution may require joint spatio-angular deconvolution procedures [55,56].
In conclusion, VALiD overcomes a fundamental limitation of existing fluorophore ensemble

orientationmapping techniques and is therefore a promising technique for fluorescencemicroscopy
orientation mapping applications.
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