
S1

Supplementary Information for:

Adhesive dynamics simulations of highly polyvalent DNA motors

Aaron T. Blanchard1,*,†, Selma Piranej2, Victor Pan1, §, & Khalid Salaita1,2*

1 Department of Biomedical Engineering, Georgia Institute of Technology and Emory University,

Atlanta, Georgia 30322, USA.
2Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA.
*Address correspondence to: ATBlanchard@ymail.com and k.salaita@emory.edu
† Current address: Department of Biomedical Engineering, Duke University, Durham, North Carolina,

27709, USA
§Current address: Intellia Therapeutics, Cambridge, Massachusetts 02139, USA

Contents
Supplemental User Guide for RoloSim v1.20 .. 3

I – Input parameters .. 3

II – Variables used to pass information between functions .. 5

Figure S1 RoloSim V1.20 flowchart and depiction of dependencies ... 14

III – Descriptions of core RoloSim files ... 14

IV – Descriptions of additional files ... 20

V – RoloSim Assumptions and Limitations ... 22

Supplemental Figures to Accompany User Guide .. 24

Figure S2: Initialization of RNA and DNA coordinates (part 1). ... 24

Figure S3: Initialization of RNA and DNA coordinates (part 2). ... 25

Figure S4: Keeping track of potential DNA-RNA pairs (part 1). ... 26

Figure S5: Keeping track of potential DNA-RNA pairs (part 2). ... 27

Figure S6: Z-height and rolling behavior of HPDMs simulated with RoloSim 28

Supplemental Note 1: RoloSim Engineering Objectives .. 29

Figure S7: Depiction of the size difference between rod-shaped and spherical HPDMS 30

Supplemental Note 2: Calculation of gravitational and electrostatic repulsion forces 31

Supplemental Note 3: Worm like chain (WLC) calculations of tether mechanics 33

Table S1 – Worm-like-chain modeling parameters and segments* .. 33

Figure S8: Tether WLC calculation and approximation ... 34

Figure S9: 𝐸𝑡𝑒𝑡ℎ measured using WLC Monte Carlo simulations .. 36

S2

Figure S10: Depiction and calculation of association ... 37

Supplemental Note 4: Optimization of RoloSim .. 38

Metrics evaluated during optimization ... 38

Figure S11: Automated analysis of simulated depletion tracks .. 38

Figure S12: Experimental measurement of path persistence (𝐿𝑡𝑟𝑎𝑗). ... 39

Figure S13: RoloSim-based estimation of 𝐹𝐻𝑃𝐷𝑀 .. 40

Figure S14: Experimental measurement of average velocity, 𝑣𝑎𝑣𝑔 .. 41

Optimization of mechanical parameters.. 41

Figure S15: Depletion tracks from simulations run with varying 𝜅𝑡
∗ and 𝑘𝑜𝑛,0/𝑘𝑐𝑙𝑣𝑔 values 43

Figure S16: Metrics for first round of optimization .. 44

Figure S17: RoloSim optimization results, round 2 .. 46

Supplemental Note 5: Estimating HPDM translocation dynamics following the formation of a single

tether ... 47

Supplemental Note 6: Assessing the accuracy of the energetic minimum approximation 49

Supplemental Note 7: Calculation of HPDM contact zone width .. 51

References ... 52

S3

Supplemental User Guide for RoloSim v1.20
The following section proceeds in three parts. Section I contains a list of all input parameters, with

descriptions. Section II describes the data structures used to track and store data in RoloSim. Section III

contains a list of all function files that are included in the core RoloSim package, a diagram of

dependencies (See Figure S1), and a brief description of each file. Section IV describes additional files

used to prepare and interpret RoloSim simulations. Finally, Section V describes some of the key physical

and mathematical assumptions made in order to make RoloSim computationally tractable, as well as

limitations of RoloSim that arise from those approximations.

Note, there are two common acronyms used throughout this documentation: the potential pairs list (PPL)

and the RNA indices cell array (RICA). These two data arrays are central to the computational efficiency

of RoloSim, so they are described here:

RICA – RNA indices cell array. In RoloSim, the RICA is called v.fIndCell. One of the most

computationally expensive tasks in adhesive dynamics is determining which guide-fuel pairs are

close enough to each other to associate. For example, if there are 106 fuel strands on the surface,

then it would require 106 distance calculations to determine which strands are within binding

range of a single guide strand. This expensive and wasteful calculation would then need to be

repeated for each DNA guide strand in interaction range, which would then need to be repeated

after every event. To circumvent this issue, the RICA, which is generated during initialization

(Fig. S2) is used as a data array that is organized in a manner that mimics the physical geometry

of the RNA fuel surface. To create the RICA, all RNA strands are divided into 10×10 nm2 grid

points, and the indices of all RNA strands within a grid point are stored within the corresponding

cell in the RICA. For example, the cell in the 46th row and 38th column in the RICA contains

RNA fuel strands with 455 nm ≤ y-coordinate < 465 nm and 375 nm ≤ x-coordinate < 385 nm.

PPL – potential pairs list. In RoloSim, the PPL is called v.unbound_pairs (see below). This is

another data structure that is utilized to decrease the number of computations of distances

between pairs. Because individual guide strands do not move very much between successive

timepoints, it is not necessary to determine which strands are within interaction range of each

other at every timepoint. Instead, the PPL is constructed to contain a running list of potential

pairs, and this list is referenced at each timepoint to determine whether strands stochastically

interact. The PPL is updated periodically when the HPDM has moved sufficiently far or when

DNA guide strands enter or leave interaction range.

The PPL and RICA are closely linked; when constructing the PPL, potential pairs can be determined by

extracting RNA fuel indices from cells in the RICA that are close to the grid point of the DNA guide

strand only, thus greatly reducing the number of computations.

I – Input parameters
Settings are initialized in the first several lines of MainRollsim.m with fields in the “Settings” struct

(these are later transferred into “s”).

FuelDensity (Default: 0.05)

Denotes the number of RNA fuel strands (per nm2) on the planar surface.

ParticleStrandDensity (Default: .091)

Denotes the number of DNA guide strands (per nm2) on the surface of the HPDM.

S4

BodyType (Default: 1)

This is an index used to specify the “type” of HPDM geometry. 1=sphere, 2=dimer,

3=rod with spherical caps, 4=polygon with rounded edges, 5=continuous track HPDM,

6=continuous track HPDM geometry without slip (4-6 will be described in future work).

Diameter (Default: 5,000)

HPDM diameter in nm. For types 1 and 2, denotes the spherical diameter of the

particle(s). For type 3, denotes the diameter of the rod and spherical caps.

SepDist (Default: 1,000)

Denotes “separation distance” between sphere centroids for types 2 and 3. Denotes motor

width for types 4, 5, and 6.

CTlength (Default: 100)

For type 5 only, this parameter denotes the length of a continuous-track HPDM along the

translocation direction.

Npoly (Default: 3)

Order of the polygon prism (e.g. the number of edges around the prism cross-section), for

type 4 only.

RadCurv (Default: 4)

Radius of curvature of the edges of the polygonal prisms, for type 4 only.

t_max (Default: 1,800)

Denotes the total duration, in simulation time, of the simulation.

dt (Default: .03)

Denotes the simulation time step duration in seconds.

kRH (Default: 2.1658)

Denotes the RNase H cleavage rate in 1/s.

DisplayFlag (Default: 1)

This parameter determines whether or not the DisplayStatus.m function is called to

periodically show the simulation progress. This flag is set to zero when many simulations

are run on a computing cluster.

DisplayInterval (Default: 1)

Denotes the duration, in simulation seconds, between successive calls to DisplayStatus.m.

RandStepSize (Default: 1)

Denotes the step size, in nm, of random displacements applied per timestep during

Brownian motion when polyvalency drops to zero.

LockPercent (Default: 0)

S5

Denotes the percent of RNA fuel strands that are non-cleavable strands (thus mimicking

DNA analogues of the RNA fuel.

beta (Default: 1)

Scaling factor for transition state tether stiffness. This parameter should be obsolete.

BiasForce (Default: 0)

Force in pN, applied in positive x-direction. Non-zero force will bias motion (Fig. 8).

kb0 (Default: 0.0091333)

Guide-fuel hybridization rate at zero distance, in 1/s.

ktstar (Default: 0.8769)

The 𝜅𝑡
∗ coefficient that defines the tensile stiffness of a tether’s transition state for

hybridization.

kt (Default: 3.663)

The 𝜅𝑡 coefficient that defines the tensile stiffness of a tether.

K (Default: 0.0045)

The Κ coefficient used to calculate the energy-extension relationship of a tether.

Kstar (Default: 0.00356)

The Κ∗ coefficient used to calculate the energy-distance relationship of a tether’s

transition state for hybridization.

 SaveFile

 This is the name of the “.mat” file that the output is saved as at the end of the simulation.

II – Variables used to pass information between functions
All information in RoloSim is passed between functions using three “struct” arrays, denoted s, v, and o.

s – which stands for “Settings” – contains information related to the input parameters. Information stored

within s does not change throughout the simulation. In addition to all of the setting parameters described

above, s, which is initialized at the beginning of MainRollSim.m and in InitializeSettings.m, contains the

following fields:

LowMidThresh

This is the cutoff height that separates the interaction range from the intermediate range

(Fig. S3). This parameter is calculated automatically by determining the distance, in nm

at which the guide-fuel association rate is equal to (0.00001)𝑘ℎ𝑦𝑏,0.

 MidHighThresh

This is the cutoff height that separates the intermediate range from the non-interacting

range (Fig. S3). This parameter is calculated automatically as 30 nm + LowMidThresh.

S6

 FOrup

This is a “cfit” function handle that describes the relationship between a tether’s squared-

extension (𝑟2, in nm2) and its rupture rate (𝑘𝑟𝑢𝑝, in 1/s). By default, FOrup is set equal to

the “FOrup15bp” cfit that is saved in the file RupRateVsDistSquaredv2.mat, which itself

is generated by running the function “WLCtetherCalc.m”.

 DisplayTime

If s.DisplayFlag is nonzero, this parameter updates during every call to s.DisplayStatus as

the current time plus s.DisplayInterval. Subsequent calls to DisplayStatus will check if

the simulation time is greater than DisplayTime to determine whether to output display

items to the figure.

 SurfaceWidth

This parameter, which is used for initialization calculations, is the width of the initial

RNA surface square. It is automatically calculated as 1,000 nm + s.SepDist.

 t_all

This is a vector, generated and used during initialization, of all timepoints that will be

modeled during the simulation. It is automatically calculated from s.dt and s.t_max.

 dTheta

This is the angle, in radians, that a spherical HPDM can roll before it is possible for

strands in the non-interacting range to transition into interaction range. This parameter is

automatically calculated from s.MidHighThresh, s.LowMidThresh, and HPDM diameter.

 RollLimit

This is calculated simply as cos(s.dTheta), and represents the change in the z-height of a

unit vector with (initial orientation [0,0,0]) rotated by dTheta away from the z-axis. In

practice, s.RollLimit is directly compared with the bottom right position of a cumulative

rotation matrix to determine whether or not to call UpdateHighMid.m in

UpdateSystem.m.

 f

This is a figure handle that is generated if s.DispFlag is nonzero. Display items will be

displayed to this figure.

 opt

This is a SimulannealbndOptions object that specifies the settings for simulated annealing

during UpdateSystem.m. It is generated in InitializeSettings.m via a call to the

“optimoptions” function.

 cutoff

This parameter is referenced by CheckEdge.m so that the surface can be expanded if the

HPDM is within s.cutoff of one of the surface’s edges. It is calculated in a BodyType-

dependent manner. This parameter is generally hard-coded to be 500 nm + s.SepDist/2 in

InitializeSettings.m.

S7

 TileSize

This parameter, which determines how far to expand a surface boundary in CheckEdge.m

if the HPDM’s x-y center-of-mass position comes within s.Cutoff of an edge, is hard

coded as 500 nm in InitializeSettings.m.

 BindTimeListLength

This parameter, which determines the number of timesteps represented in

v.BindEventList (see description of ApplyStochasticChanges.m), is hard-coded as 2,000

steps in InitializeSettings.m.

 BindTimeListTime

This parameter, which determines the duration of simulation time represented in

v.BindEventList (see description of ApplyStochasticChanges.m), is calculated at

s.BindTimeListLength multiplied by s.dt.

 EulerInit

This parameter, which defines the initial orientation in Z-Y-Z Euler angles, consists of

three randomly generated numbers between 0 and 2π. This vector is generated in

InitializeSettings.m and subsequently used to calculate the initial rotation matrix using

CreateR.m.

 TransWithinLowThresh

This parameter, which is generated in GenerateAssociationIndices.m and used in

BindingDistances.m, is a monotonically-increasing vector that denotes the z-heights at

which the number of grid cells accessible by a guide strand changes. When generating

entries in the PPL for a given guide strand, the PPL is populated with RNA fuel indices

from grid cells in the RICA in a manner that depends on the z-height of the guide strand:

If the guide strand’s z-height is less than the first entry of s.TransWithinLowThresh, then

the first entry of CellIndOffset is referenced; if the z-height is between the first and

second entries of s.TransWithinLowThresh, then the second entry of CellIndOffset is

referenced; and so on.

 CellIndOffset

This cell array, which is generated in GenerateAssociationIndices.m and used in

BindingDistances.m, contains information necessary to reference appropriate cells from

the RICA when generating entries for the PPL. Each cell contains a matrix with two

columns; for each row, the entry in the first column denotes the offset in x-grid points

and the second entry denotes the offset in y-grid points, both with respect to the guide

strand’s grid cell, that must be referenced. When generating a list of PPL entries (in

BindingDistances.m) for a given guide strand, the guide strand’s height is calculated and

checked against s.TransWithinLowThresh to determine which entry in s.CellIndOffset

should be referenced. Then, all cells with offsets denoted in the rows of the selected cell

of s.CellIndOffset are extracted.

 TimeIntFun

This function handle denotes the smallest type of integer that can be used to index all

timepoints uniquely, as calculated by MinIntType.m.

S8

 LockDivisor

This parameter, which is generated in InitializeSettings.m as 100/s.LockPercent (rounded

to the nearest integer), is used in ApplyStochasticChanges.m to determine whether an

RNA fuel strand should be treated as a non-cleavable DNA lock. Specifically, a fuel

strand is treated as a DNA lock strand if the remainder of its index divided by

s.LockDivisor is equal to zero.

v – which stands for “Variables” – contains information used to describe the current state of the HPDM,

including the position and orientation of the HPDM, a list of guide molecules within interaction range of

the surface, and the distances between guide-fuel pairs. Information stored within v is highly dynamic and

is not saved during or after the simulation. Specifically, v contains the following fields.

 Step

This integer indicates which timestep the simulation is currently on, and is incremented at

the end of each call to UpdateSystem.m (or in the jump-ahead section of

ApplyStochasticChanges.m) to move the simulation forward to the next timestep.

 ClvCount

This integer indicates the total number of cleavages that have occurred during the

simulation. It is incremented with each call to CleaveBond.m and output to the command

prompt during each call to DisplayStatus.m.

 RupCount

This integer indicates the total number of ruptures that have occurred during the

simulation. It is incremented with each call to BreakBond.m and output to the command

prompt during each call to DisplayStatus.m.

 BindCount

This integer indicates the total number of tether association events that have occurred

during the simulation. It is incremented with each call to CreateBond.m.

 R

This 3×3 rotation matrix is used to determine whether or not UpdateHighMid.m needs to

be called in UpdateSystem.m. It describes the cumulative HPDM rotation that has

occurred since the last call to UpdateHighMid.m. It is reset to the 3×3 identity matrix

following each call to UpdateHighMid.m and is updated in UpdateR.m, which is called in

each call to UpdateSystem.m.

 x_move

This scaler denotes the cumulative displacement in the x-direction that has occurred since

the BindEventList was last updated in ApplyStochasticChanges.m.

 y_move

S9

This scaler denotes the cumulative displacement in the y-direction that has occurred since

the BindEventList was last updated in ApplyStochasticChanges.m.

 EdgePos

This is a 1×4 vector that describes the positions of the boundaries of the RNA fuel

surface. The first and third entries of the vector should always be set to zero. The second

and fourth entries denote the width of the surface in the x- and y-dimensions,

respectively, and are updated whenever the surfaces is expanded in CheckEdge.m.

 Euler

This is a 1×3 vector containing the Z-Y-Z Euler angles that describe the HPDM’s current

orientation. It is updated after each energy minimization step in UpdateSystem.m.

 Px

This is a vector that contains the x-positions of the HPDM at all current and former

timesteps. A new entry is added to it after energy minimization in UpdateSystem.m (or

with each skipped timepoint in the jump-ahead section of ApplyStochasticChanges.m).

 Py

This is a vector that contains the y-positions of the HPDM at all current and former

timesteps. A new entry is added to it after energy minimization in UpdateSystem.m (or

with each skipped timepoint in the jump-ahead section of ApplyStochasticChanges.m).

 Pz

This is a vector that contains the z-positions of the HPDM at all current and former

timesteps. A new entry is added to it after energy minimization in UpdateSystem.m (or

with each skipped timepoint in the jump-ahead section of ApplyStochasticChanges.m).

 fCoords

Which stands for “fuel strand coordinates”, is a matrix with 3 columns corresponding to

x-, y-, and z-coordinates. Each row in the matrix corresponds to a single RNA fuel strand.

The matrix is created during initialization and expanded when necessary during calls to

CheckEdge.m. These values are referenced frequently when calculating inter-strand

distances in UBdistCalc.m. The x- and y- coordinates of RNA strands do not change

during the simulation, but a strand’s z-coordinate is switched from 0 to -∞ when it forms

a tether with a guide strand. If that tether is ruptured (but not cleaved), then the fuel

strand’s z-coordinate is set back to 0. The “fuel strand index” discussed elsewhere

describes a fuel strand’s row in this matrix. This matrix is analogous to o.fCoords, with

the only difference being that it contains z-coordinates.

 gCoords

Which stands for “guide strand coordinates”, is a matrix with 3 columns corresponding to

the x-, y-, and z-coordinates of all guide strands. Each row in the matrix corresponds to a

single DNA guide strand’s coordinates. Coordinates are updated at each timestep for

strands in interaction or intermediate range, but coordinates for strands in non-interaction

range are centered on the origin. The “guide strand index” discussed elsewhere describes

S10

a guide strand’s row in this matrix. This matrix is analogous to o.gCoords, with the main

difference being that coordinates are updated frequently throughout the simulation.

 gIndHigh

This vector contains a list of indices for all guide strands that are in non-interacting range.

It is updated during calls to UpdateHighMid.m. See Fig. S3 for a schematic depiction.

gIndMid

This vector contains a list of indices for all guide strands that are in interaction range. It is

updated during calls to UpdateHighMid.m and UpdateMidLow.m. See Fig. S3 for a

schematic depiction.

 gIndLow

This matrix contains a dynamic list of all DNA guide strands in interaction range,

including associated information necessary to speed up potential-pairs’ distance

calculations. Each row in this matrix corresponds to one DNA guide strand in interaction

range. The first column contains the guide strand’s index (it’s row in the coordinate list

v.gCoords). The second column contains the position of the first row in the PPL with a

potential pair involving this guide strand (this is updated in calls to the RefreshUBpairs

sub-function in UBdistCalc.m). The third column contains an integer denoting the

number of potential pairs that are listed continuously for this guide strand in the PPL. The

values in the second and third columns are used for inter-strand distance calculations in

UBdistCalc.m. The fourth and fifth columns contain the x- and y-coordinates

(respectively) of the guide strand rounded to the nearest 10 nm. These latter two values

are used to determine which grid cell the strand is in when generating PPL entries in

AddToUBpairs.m, and to determine whether the guide strand has shifted into a new grid

cell in UpdateCoords.m. The fifth column contains the guide strand’s z-coordinate, which

is used to determine which grid cells are within binding range in BindingDistances.m.

Rows are added to this list in calls to CreateBond.m (Fig. S5) and removed in calls to

BreakBond.m and CleaveBond.m (Fig. S4). See Fig. S3 for a schematic depiction of this

matrix.

 fIndCell

This cell array, which is referred to elsewhere in this document as the RNA indices cell

array (RICA), speeds up PPL creation by storing RNA fuel indices in a manner that

mimics the physical geometry of the surface; each cell contains a list of indices

corresponding to RNA fuel strands that are located within a 10×10 nm2 bin

corresponding to the position of the cell in the array. For example, the cell in the 46th row

and 38th column in the RICA contains RNA fuel strands with 455 nm ≤ y-coordinate <

465 nm and 375 nm ≤ x-coordinate < 385 nm. See a schematic depiction of the RICA in

Fig. S2. This cell array is generated during initialization and extended when necessary

upon calls to CheckEdge.m. When strands are irreversibly cleaved, their indices are

removed from the RICA to prevent needless future computations. When a DNA guide

strand enters interaction range, the grid cells that can contain RNA fuel strands within a

cutoff distance of the guide strand are determined as a function of guide strand z-height

S11

in BindingDistances.m. The RNA indices in these cells are then extracted and paired with

the guide strand index for addition to the PPL.

 pairs

This matrix, which has two columns, contains a dynamic list of tethers bound to the

HPDM. Each row corresponds to one tether. For each row, the first column contains the

index of the guide strand in the tether, while the second column contains the index of the

fuel strand. Tethers are added to and removed from this list during calls to

CleaveBond.m, CreateBond.m, and BreakBond.m.

 unbound_pairs

This variable is referred to elsewhere as the potential pairs list (PPL). It is a matrix that

contains three columns, and each row either 1) corresponds to a potential guide-fuel pair

or 2) contains dummy / padding values that occupy pre-allocated space. For rows that

correspond to potential pairs, the first and second columns contain the indices of the

DNA guide and RNA fuel strands, respectively, involved in the potential pairs. The third

column contains the guide-fuel squared-distance values that were calculated during the

last call to UBdistCalc.m. This matrix contains many rows of un-used pre-allocated

space, which new potential pairs are inserted into whenever new guide strands are added

to interaction range (Fig. S4). The first row of pre-allocated space is pointed to by

ubp_idx. When new tethers are added to v.pairs, the potential pairs corresponding to

guide strand in the PPL are over-written with dummy values (see Fig. S5). When the PPL

runs out of padding, RefreshUBpairs (a sub-function of AddToUBpairs.m) is called to

remove all dummy rows and add new padding.

 ubp_idx

This integer is an index that points to the first padded position in the PPL (see Fig. S4),

thus denoting the position at which entries should be added to the PPL. It is updated in

AddToUBpairs.m.

 BindEventList

This matrix contains a list of potential pairs that are expected to form within a short

number of timesteps, specified by s.BindTimeListLength. This list is constructed from

the PPL in ApplyStochasticChange.m following calculations of expected association

times by UBdistCalc.m. Because the PPL is very large, it is computationally inefficient to

calculate new stochastic association times and determine which events occur within the

current timestep for every single timestep. Instead, association times are calculated and

events within the next s.BindTimeListLength timesteps are extracted, sorted, and stored

in v.BindEventList. In subsequent timesteps, association events are drawn from the top of

this list. This matrix contains three columns: the first column contains an integer with the

number of timesteps until association occurs, and is decremented at the end of each

timestep; the second and third columns contains the indices of the guide and fuel strands

involved in the association event. v.BindEventList is refreshed whenever the HPDM

moves more than 1 nm relative to the x-y plane.

 LockInd

S12

This vector contains a list of indices to entries in o.LockData.PairList that still represent

active pairs. It is used to determine which entries in o.LockData.TimeData must be

updated in each timepoint.

 t

 This scalar denotes the current time (in simulation time) of the simulation.

o – which stands for “Output” – contains information that is saved at the end of the simulation, including

a list of the HPDM’s position and orientation at each timestep and a full list of tether formation, cleavage,

and rupture events. The information contained within o is sufficient to re-create the HPDM’s state at any

timepoint during the simulation, but requires much less memory than v. Specifically, o contains the

following fields:

 fCoords

Which stands for “fuel strand coordinates”, is a matrix with 2 columns corresponding to

x- and y-coordinates (all z-coordinates are zero, so they are not saved). This output is

generated during initialization and is updated when the surface is expanded during

CheckEdge.m. The “fuel strand index” discussed elsewhere describes a fuel strand’s row

in this matrix. This matrix is analogous to v.fCoords, but only for the initial timepoint.

 gCoords

Which stands for “guide strand coordinates”, is a matrix with 3 columns corresponding to

the initial x-, y-, and z-coordinates of all guide strands. This output is generated during

initialization and does not change during the simulation. The “guide strand index”

discussed elsewhere describes a guide strand’s row in this matrix. This matrix is

analogous to v.gCoords, but only for the initial timepoint.

 TimeData

This is a matrix with a number of rows equal to the number of timesteps and six columns.

The first three columns of the ith row correspond to the x-, y-, and z-position of the

HPDM at the ith timestep, while the fourth, fifth, and sixth columns correspond to the Z-

Y-Z Euler angles that describe the HPDM’s orientation at the ith timestep. For continuous

track HPDMs (s.BodyType=5), a seventh column denotes the roll angle. This matrix is

pre-allocated during initialization, and its rows are filled in throughout the simulation.

 EventData

This is a table with four columns. Each row in the table describes an event (tether

formation, cleavage, or rupture). The first column, called “EventType”, describes what

type of event occurred (1=association, 2=cleavage, 3=rupture). The second column,

called “TimeIndex”, is an integer that describes what timestep the event occurred in. The

third column, gInd, describes the index of the guide strand involved in the event, while

the fourth column, fInd, describes the index of the fuel strand involved in the event. This

table is generated during initialization and is extended throughout the simulation as

events occur.

S13

 pairs

This is a two-colum matrix listing the set of tethers at the initial timepoint. It is analogous

to v.pairs, but reflects the state of the tether set at the initial timepoint only. For each row,

the first column denotes the index of the DNA guide strand in the tether, while the second

column denotes the index of the RNA fuel strand in the tether,

 r2

This vector contains a growing list of the distance-squared between strands immediately

before association for every association event that occurs.

 dz

This vector contains a growing list of the z-heights of the guide strands involved in every

association event that occurs.

S14

Figure S1 RoloSim V1.20 flowchart and depiction of dependencies

The core of RoloSim V1.20 is a package containing 25 MATLAB files (extension: .m). The manner in

which the files relate to each other is shown in the above figure. Each file is listed next to a number label

in a white or brown box. Files are described in the text below in the order denoted by their number labels.

White label boxes indicate files that call additional files (i.e. dependencies). Brown label boxes indicate

files with no dependencies, and brown boxes with dashed borders are files that have no dependencies that

are called by multiple files. All files with dependencies are depicted in the figure in a block with a list of

dependencies. The main file, MainRollSim.m, contains a flowchart that shows the iterative process used

to simulate HPDM motion.

III – Descriptions of core RoloSim files
1) MainRollSim.m

This function is RoloSim’s main script. The first large block of code contains definitions of input

parameters. The simulaiton is initialized with a call to “InitializeSettings.m”, and then the

functions “ApplyStochasticChanges.m”, “UpdateSystem.m”, and (periodically)

“DisplayStatus.m” are called iteratively until the simulation is complete. The output of the

simulation is then saved with a call to “SaveOutput2.m”, and, following a 1-minute pause, the

function “CallMRSmeasureForce” is called to begin the process of estimating the force generated

by the simulated HPDM (see next section – note this line is commented out). MainRollSim.m has

two inputs, both integers: i, which is used to determine a parameter of interest in parameter sweep

studies (e.g. DiameterAll=500:500:6000;Settings.Diameter=DiameterAll(i);); and j, which is used

to initialize the random number generator (e.g. rng(j)) and defines the iteration number when

S15

multiple iterations at a single condition are performed. Note that j must be changed between

iterations to produce different stochastic outputs, if all setting are the same.

2) InitializeSettings.m

This function, which is called at the beginning of the simulation, performs several operations

necessary to initialize the simulation including the calculation of:

• The width of the RNA fuel surface (s.SurfaceWidth).

• The cutoff distance (s.cutoff), which is used by the function “CheckEdge.m”.

• The angle, in radians, that an HPDM can roll (s.dTheta) before it is possible for strands in

the non-interacting range to transition into interaction range (Fig. S3). This parameter is

used to determine whether “UpdateHighMid.m” must be called.

In addition, the function performs the following tasks:

• The parameter s.TileSize (which is the distance by which the RNA fuel surface boundary

is shifted within CheckEdge.m) is set to 500 nm.

• The bind time list is initialized.

• A figure (s.figure) is opened for display if s.DisplayFlag is nonzero.

• Settings for simulated annealing are initialized (s.opt).

• The HPDM rotation, saved in Z-Y-Z Euler angles, is initialized as [0,0,0].

• Additional data initialization, including initialization of most of the field in the “v” struct

is performed by calling “InitializeCoordsIndicesAndPairs.m”

• The x- and y-coordinates of the first DNA guide strand and the first RNA fuel strand are

set to -∞ and ∞, respectively. (At the time of this writing, I don’t remember why this is

done, but I remember it was important at one point in the development so I’ve kept it this

way).

• The smallest type of unsigned integer that can be used to save time index information in

o.EventData is calculated using MinIntType.m.

• The “o” struct is initialized by creating the table o.EventData, initializing o.TimeData,

and duplicating the pair list, RNA fuel coordinates, and DNA guide coordinates.

3) ApplyStochasticChanges.m

This function, which is called in every timestep by MainRollSim.m, performs the following steps:

• Calculates the time until each tether is cleaved (𝐶𝑙𝑣𝑔𝑇𝑖𝑚𝑒 = −log(𝑟𝑎𝑛𝑑)/𝑘𝑐𝑙𝑣𝑔) or

ruptured (𝑅𝑢𝑝𝑇𝑖𝑚𝑒 = −log(𝑟𝑎𝑛𝑑)/𝑘𝑟𝑢𝑝) where 𝑟𝑎𝑛𝑑 is a random number between

zero and one. A list of events that occur in the current timesteps is then assembled, with

rupture events taking precedence over cleavage if both occur for the same tether.

• Calculates the time until binding events happen in a fashion similar to the above step.

However, because there are a large number of potential binding interactions, it would be

computationally costly and inefficient to perform binding time calculations during every

timestep. To overcome this limitation, association times are calculated via calls to

UBdistCalc.m and UBtimeCalc.m and all binding events that occur within a time

specified by s.BindTimeListTime are added to v.BindEventList. After creation of

v.BindEventList, events are cross checked to eliminate events that contain fuel or guide

indices found in earlier-occuring events in the list. In subsequent timesteps, association

S16

times are only re-calculated if 1) v.BindEventList is empty, and/or 2) the HPDM has

translocated by more than 1 nm (in the x-y plane) since v.BindEventList was last

updated. Association events for the current timestep are then calculated by referencing

v.BindEventList to find all binding events that occur in the current timestep.

• If no events occur during the current timestep, and if pairs exist, then there is no point in

calling UpdateSystem.m because the HPDMs position and orientation will remain the

same. Therefore, ApplyStochasticChanges.m has a code to jump ahead to the next

timestep at which events do occur. This code updates the simulation time and places

repeat values in v.Px, v.Py, v.Pz, and o.TimeData, to denote that no movement occurs

during the timesteps in which no events occur.

• For all binding events that occur in the current timestep, tethers are created by calling

CreateBond.m. For any new DNA-DNA lock tethers, entries in o.LockData are created.

• For all cleavage events and rupture events that occur, tethers are removed with calls to

CleaveBond.m and BreakBond.m, respectively. For any DNA-DNA lock tether ruptures,

the time of rupture is recorded in o.LockData.

• All cleavage, rupture, and association events are added to o.EventData.

4) UpdateSystem.m

This function, which is called in every timestep by MainRollSim.m, updates the HPDM’s

position and orientation and performs other data management following alterations to the tether

set performed in ApplyStochasticChanges.m. The bulk of the code is skipped if no events (e.g.

tether formation, cleavage, or rupture) occurred during the last call to ApplyStochasticChange.m

(in which case the HPDM’s position and orientation do not change). Otherwise, a series of steps

are performed:

• The HPDM’s position and orientation is updated. If there are one or more tethers, this is

accomplished by using the function “simulannealbnd” to perform energy minimization,

with the function EnergyMinimum3.m used as the objective function and an initial guess

of [0, 0, 0, 0, 0, 0]. If there are no tethers, the HPDM’s position is updated by displacing

the HPDM in a random direction parallel to the x-y plane by an amount specified by

s.RandStepSize.

• The positions of guide strands are updated by calling UpdateCoords.m.

• The position and orientation of the HPDM are updated in the “v” struct and stored in the

“o” struct.

• Unpaired DNA guide strands are swapped between interaction and intermediate ranges

by calling UpdateMidLow.m.

• The HPDM’s rotation since the last call to UpdateHighMid.m is checked against

s.RollLimit and, if sufficient rotation has occurred, UpdateHighMid.m is called.

• The function CheckEdge.m is called to determine whether the HPDM is approaching the

edge of the RNA fuel surface and expand the surface if necessary.

• If locks (non-cleavable DNA analogues of RNA fuel) exist, information about their

extensions are stored in o.LockData.

5) DisplayStatus.m

This function is only called if, 1) the setting “s.DisplayFlag” is not set to “0”, and 2) a duration, in

simulation time, longer than the setting “s.DisplayInterval” has passed since the last call to

S17

DisplayStatus.m. The function displays a 2D histogram of un-consumed RNA fuel (thus

simulating a typical fluorescence microscopy image of Cy3-labeled RNA during HPDM

translocation) with a 30 nm bin size, as well as a circular outline of the HPDM to show its current

position. The function also outputs some system parameters to the MATLAB command prompt;

specifically, the polyvalency, the duration in the simulation and reality since the initiation of the

simulation, and the total number of cleavage and rupture events that have occurred in the

simulation.

6) SaveOutput2.m

This function, which is called at the end of the simulation, extracts all fields within the “o” and

“s” structs and saves them as variables within a .mat file (this approach was selected to improve

the robustness of file storage, as structs can sometimes become corrupted while or after being

saved to .mat files). This function then pauses the simulation for 5 minutes to ensure that the file

has time to finish saving before the code terminates and the compute cluster core is switched off.

7) MinIntType.m

This is a simple function that counts how many guide strands are generated and determines the

smallest type of unsigned integer (i.e., uint8, uint16, uint32) that can be used to give a unique

index to each one.

8) InitializeCoordsIndicesAndPairs.m

This function, which is called by “InitializeSettings.m”, initialized data in the “v” struct via

several steps:

• The HPDM coordinates are initialized with v.Px and v.Py set at the center of the RNA

fuel surface and with v.Pz=5 nm.

• The sub-function “GenerateStrandCoordinates” is then called. This sub-function

generates v.fCoords by randomly patterning fuel strands across a square with a width

defined by s.SurfaceWidth at a surface density defined by s.FuelDensity. The function

then generates v.gCoords by randomly patterning guide strands on a simulated HPDM at

a surface density defined by s.ParticleStrandDensity (this step depends on s.BodyType).

• The sub-function “DivideGuideStrands” is then called. This sub-function separates

strands into interaction range, intermediate range, and non-interacting range (referred to

as low, mid, and high, respectively, see Fig. S3) according to height cutoffs defined by

s.LowMidThresh and s.MidHighThresh. The sub function then generates lists for the

three range (v.gIndHigh, v.gIndMid, and v.gIndLow, see Fig. S3).

• The sub-function “CellularizeCoords” is then called. This function generates the RICA,

wherein each cell contains a list of fuel indices within a 10×10 nm2 bin.

• An initial list of fuel-guide pairs (v.pairs) is then generated by creating a list of all pairs

within 5 nm of each other and removing duplicates.

• The parameters s.TransWithinLowThresh and s.CellIndOffset, which are used to

determine which cells in the RICA to extract fuel indices from as a function of guide

strand height, are then calculated by calling “GenerateAssociationIndices.m”.

• A rotation matrix is then created from a random triplet of Z-Y-Z Euler angles by calling

“CreateR.m”, and the HPDM’s height is calculated by zAdjCalc.

S18

• Finally, the PPL (v.unbound_pairs) is created by calling BindingDistances.m and the PPL

is padded with 100,000 empty rows. The PPL pointer (v.ubp_idx) is then initialized as

the index of the first padded row.

9) zAdjCalc.m

This function, which is called by multiple other functions, calculates the relationship between

HPDM rotation and z-displacement of the HPDM’s center-of-mass. For spherical HPDMs,

rotation does not influence z-displacement. However, the center-of-mass of rod-shaped HPDMs,

for example, must be displaced upwards with off-axis rotations to prevent collision with the

surface.

10) GenerateAssociationIndices.m

This function generates two settings variables – s.TransWithinLowThresh and s.CellIndOffset –

to speed up calls to the RICA. This code determines which 10×10 nm2 grid-cells around a guide

strand’s grid cell can contain strands within a binding cutoff distance. (The binding distance

cutoff is set equal to the parameter s.LowMidThresh). The two variables

s.TransWithinLowThresh and s.CellIndOffset are then used subsequently during additions to the

PPL to determine which fuel strands can serve as potential pairs.

11) CreateR.m

This is a simple function that creates a rotation matrix from a set of 3 Z-Y-Z Euler angles. It's

much quicker than built-in functions that do the same thing.

12) BindingDistances.m

This function, which is called by multiple other functions, determines which RNA fuel strands are

within binding range of a DNA guide strand (see description of “GenerateAssociationIndices.m”)

and returns a list of all potential interactions to be added to the PPL. This calculation is sped up

by the use of the RICA; the guide strand’s “bin” is calculated by rounding its x- and y-

coordinates to the nearest 10 nm. The guide strand’s distance from the surface is then used to

determine which bins in the RICA could contain RNA fuel strands within binding range. A list of

potential pairs is then created by pairing the guide strand’s index with each of the indices of RNA

strands within the determined grid cells. This function can accept a list of multiple DNA guide

strands as an input, and will perform this process for each guide strand and produce a single list

of potential pairs as an output. For each guide strand input, this function also formats and outputs

a row in the list of DNA strands in interaction range, which can then be appended to the full list.

13) CleaveBond.m

This function is called by “ApplyStochasticChanges.m” whenever a tether is cleaved due to

irreversible degradation of the RNA by RNase H. The function 1) removes the tether from the

“pairs” list, 2) permanently removes the fuel molecule from the surface by removing it from the

RNA indices cell array (RICA – defined in the description of

“InitializeCoordsIndicesAndPairs.m” above), and 3) calls “AddToUBpairs.m” to perform all

operations necessary to properly returns the DNA strand to the list of DNA strands in interaction

range.

14) CreateBond.m

S19

This function is called by “ApplyStochasticChanges.m” whenever one or more tethers is formed.

For each tether, the function 1) adds the tether to the “pairs” list, 2) removes the fuel molecule

from interaction range by setting its position to -∞, and 3) calls “RemoveFromUBpairs.m” to

perform all operations necessary to properly remove the DNA strand to the list of DNA strands in

interaction range.

15) BreakBond.m

This function is called by “ApplyStochasticChanges.m” whenever a tether is ruptured. The

function 1) removes the tether from the “pairs” list, 2) returns the fuel molecule to the surface

(from its temporary z-height of -∞), and 3) calls “AddToUBpairs.m” to perform all operations

necessary to properly returns the DNA strand to the list of DNA strands in interaction range.

16) AddToUBpairs.m

This function, which is called by multiple other functions, performs all operations necessary to

add one or more guide strands (and all of their potential RNA fuel binding partners) to the PPL.

This function calls BindingDistances.m, UBdistCalc.m, and UBtimeCalc.m to perform this data

management, and also updates the PPL index. In addition, if the PPL has run out of padding, the

sub-function “RefreshUBpairs” is called to remove all dummy-rows from and re-pad the PPL.

For a schematic depiction of data manipulation, see Fig. S4, which shows the operations

performed to add a guide strand to the PPL following the cleavage of its RNA binding partner.

17) RemoveFromUBpairs.m

This function is called to remove a guide strand the list of guide strands in interaction range and

overwrite the strand’s rows in the PPL with dummy values. For a schematic depiction of data

manipulation, see Fig. S5, which shows the operations performed after a DNA strand pairs with

an RNA strand.

18) UBdistCalc.m

This is a simple function that calculates the squared-distances between pairs of DNA guide and

RNA fuel strands in the PPL.

19) UBtimeCalc.m

This is a simple function that calculates the time until a guide-fuel pair (or multiple pairs)

hybridize. This calculation is performed by generating random number(s): 𝐵𝑖𝑛𝑑𝑇𝑖𝑚𝑒 =

−log(𝑟𝑎𝑛𝑑)/𝑘𝑜𝑛, where 𝑟𝑎𝑛𝑑 is a randomly generated number between zero and one. 𝑘𝑜𝑛 is

calculated from the squared-distance between the two strands using eqns. 6-7 from the main text.

20) UpdateMidLow.m

This function, which is called in every timestep by “UpdateSystem.m” determines which DNA

guide strands have transitioned from “interaction range” to “intermediate range” (see Fig. S3) and

calls “RemoveFromUBpairs.m” to remove them from the list of DNA strands in interaction

range. Similarly, the function also determines which DNA guide strands have moved from

“intermediate range” to “interaction range” and calls “AddToUBpairs.m” to add them to the list

of DNA strands in interaction range.

21) UpdateHighMid.m

S20

This function, which is called by “UpdateSystem.m” periodically (specifically, it is called

whenever the HPDM has rotated enough for any point in non-interacting range to transition into

interaction range since the last call of UpdateHighMid.m) determines which DNA strands in non-

interacting range have transitioned into intermediate range and vice-versa (see Fig. S3). The

function applies all necessary data management steps to transition these strands.

22) EnergyMinimum3.m

This function, which is called by “UpdateSystem.m”, calculates the energy of the system (see the

main text for details on energy calculations). This function is called within the

“simmulannealbnd” simulated annealing step for the purpose of calculating the energetic

minimum HPDM position and orientation. This function calls “zAdjCalc.m” to determine how an

HPDM’s rotational state influences its z-height. Note that the number “3” in the file’s title is an

arbitrary notation of this file’s version number prior to release.

23) CheckEdge.m

This function, which is called by “UpdateSystem.m”, checks to see if the HPDM is within a

cutoff distance (s.cutoff) of a boundary (or two boundaries) of the existing RNA surface. If so,

the function also extends the boundary (or boundaries) by a distance specified by s.TileSize (set

to 500 nm by default) by adding additional fuel strands to the surface between the existing

boundary and the new boundary. The addition of new fuel strands also requires the expansion of

the RNA indices cell array (RICA – defined in the description of

“InitializeCoordsIndicesAndPairs.m” above). If expansion occurs at the lower x-axis and/or the

lower y-axis (e.g. left or bottom) boundary, then existing coordinates of all RNA and DNA

strands, as well as the HPDM coordinates, are adjusted (in both the o and v structs) to ensure that

the full surface is situated in the x>0, y>0 quadrant of the Cartesian plane.

24) UpdateR.m

This is a simple function that accepts as its inputs 1) a rotation vector, which it then converts to a

rotation matrix, and 2) an initial rotation matrix. The two rotation matrices are then multiplied

together. In other words, this function updates the orientation defined by the initial rotation matrix

to include the additional rotation defined by the rotation vector.

25) UpdateCoords.m

This function updates the coordinates of paired guide strands and unpaired guide strands in

interacting or intermediate range. The function then determines which unpaired guide strands

have changed grid cells since the last timestep and, for each, refreshes their entries in the PPL by

calling RemoveFromUBpairs.m and AddToUBpairs.m.

IV – Descriptions of additional files

26) CallMRSmeasureForce.m

This function has two inputs, the first of which is the name of a RoloSim output file and the

second of which is “N”. This function performs N iterations of stall force measurement by calling

MRSmeasureForce N times, each time saving the save output (oLock) in a new file. The function

S21

also has code that outputs details of any error that may cause an iteration of MRSmeasureForce to

terminate prematurely.

27) MRSmeasureForce.m

This function performs a single iteration of HPDM stall force measurement from an output file

specified by the input “OutputFileName”. The function first calls loadRestruct.m to load the

Output and Setting structs and re-format them in the manner that is used by RoloSim. The

function then selects a random timestep between the 1,000th timestep and the last timestep at

which an event occurred, and then calls ReInitialize.m to re-create the “v” struct and finalize re-

creation of the “o” and “s” structs. A random tether is then selected and designated as an

indestructible lock tether that will be used to stall the HPDM. A RoloSim simulation is then

allowed to run in a manner similar to MainRollSim.m, with the following key differences:

• ApplyStochasticChangesPin.m, a slightly-modified version of

ApplyStochasticChanges.m, is called rather than ApplyStochasticChanges.m.

• Rather than running until s.t_max is reached, the simulation runs until the

number of tether drops below a cutoff polyvalency, which is currently hard-

coded as PolyvalencyCutoff=5.

• Rather than saving the final output, this function outputs “oLock”, which

contains fields “Extension” (the extension, in nm, of the indestructible lock tether

at all timepoints), “dt” (from s.dt), “LockPair” (a two-component vector with the

indices of the guide and fuel strands that composed the indestructible tether), and

“Tpoint” (The timepoint at which this iteration of the simulation began).

The second input, “j”, is an index used to initialize the random number generator (e.g. rng(j)).

Note that different results will only be obtained from iterations that start with different j input

values.

28) loadRestruct.m

This function loads all variables from the output file and re-structures them within the “Output”

and “Settings” (which are similar to “o” and “s”) structs.

29) ReInitialize.m

This function performs all tasks necessary to re-create the “v” struct based on “s” and “o” inputs

at a timepoint given by the third input “TimePoint”. The code contains a complicated block of

text that fixes an issue with orientation storage, which should be addressed in a future version of

RoloSim. The function also calls upon sub-functions “CellularizeCoords” and

“DivideGuideStrands”, as well as the function BindingDistances.m, as part of the v re-creation

(see Figs. S1-2).

30) ApplyStochasticChangePin.m

This function, which is called in each timestep by MRSmeasureForce.m, is nearly identical to

ApplyStochasticChanges.m, with the key difference being that it includes code that prevents an

indestructible tether from being cleaved or ruptured.

31) EnergyMinimumCT.m

S22

This is a variant of EnergyMinimum3.m that is specific to continuous track (s.BodyType=5)

HPDMs. It was not used in the present study but will be used in future work.

32) CreatePBSfiles.m

This script, which is located in the “CreatePBS” sub-directory (to prevent the main directory from

getting cluttered), was used to create batches of PBS files necessary to run many simulations in

parallel on a computing cluster. PBS files contain commands that are specifically formatted for

the Partnership for an Advanced Computing Environment (PACE) at the Georgia Institute of

Technology. Running this script currently generates several files for performing a parameter

sweep of calculations with various HPDM diameters. In the current example, there are 10

different diameters being tested. The “i" and “j” parameters in the for loops are the same “i" and

“j” indices used in MainRollSim.m. Therefore, the current code creates 5 PBS files (j ranging

from 1 to 5) each for 10 different HPDM diameters, each denoted by the index i. The script also

creates a batch submission file “BatchSubFile.txt” at the end, which can be used to initiate all

simulations at once. Note that, in this example, RoloSim would need to be run on the server with

the lines that start with “SaveFile=['~/scratch/…” and “CallMRSmeasureForce(…)” in

MainRollSim.m un-commented.

33) WLCtetherCalc.m

This code can be used to re-create the function handle “FOrup15bp” and save it as

“RupRateVsDistSquaredv2.mat”. It calls the function WLCapprox.m to perform worm-like-chain

force-extension calculations.

34) WLCapprox.m

This code applies the approximation developed by Petrosyan (Rheologica Acta volume 56, pages

21–26, 2017) to calculate extension as a function of force, the number of residues in a worm-like-

chain, the chain’s contour length per residue, the polymer’s persistence length, and thermal

energy at room temperature.

V – RoloSim Assumptions and Limitations
RoloSim is not suitable for the simulation of very small HPDMs (e.g. nanomotors 25 nm diameter).

RoloSim is not able to calculate association distances that include wrapping of the transition state tether

around the body of an HPDM; all distances and extension calculations are simple end-to-end calculations.

This is not an issue for HPDMs with dimensions much larger than the typical tether length. However, if

the boundary between the interaction range and the intermediate range is higher than the HPDM diameter,

the interaction range is automatically adjusted to be set at the HPDM radius during “InitializeSettings.m”.

This setting is implemented to prevent associations of tethers through the body of a small (e.g. 25 nm

diameter) HPDM, as only strands within interaction range can form tethers.

RoloSim outputs are not saved periodically during the simulation, and are instead saved only once at the

very end. An earlier version of RoloSim implemented periodic saving (e.g. every 30 minutes in real-

time), but this resulted in output files becoming corrupted on computing clusters. We were unable to

determine why file corruption occurred, so we removed periodic saving and ensured that the wall-time

used for cluster computing was much longer than necessary (generally, wall-time was set to 1-week).

As discussed in the description of “ApplyStochasticChanges.m“, stochastic association times are not

calculated in every single timestep. Instead, association times for specific guide-fuel pairs are calculated

only after the HPDM has translocated by >1 nm in the x-y plane since the previous association time

S23

calculation. Displacements below 1 nm were assumed to be small enough that they would not

meaningfully affect kon. However, technically it would be possible for large z-displacements to occur (e.g.

moving closer to the substrate by 5 nm) without surpassing the 1 nm x-y displacement threshold. It is also

possible for the HPDM to rotate substantially, thus causing inter-strand distance changes for some pairs to

change by much more than 1 nm, without shifting its center of mass. These specific scenarios could

potentially cause inaccurate binding time calculations, but were assumed to not occur with meaningful

frequency because 1) z-height fluctuations are generally very small (Fig. S6a-b), and 2) the tight coupling

between translation and rotation (Fig. S6c-e) make large rotations with very small associated translations

very unlikely. However, future versions of RoloSim could close this gap by including calculations of 1) z-

displacements and 2) maximum possible rotational displacements for strands within interaction range. In

addition, in future work the cutoff displacement (currently 1 nm) and s.BindTimeListTime could

potentially be optimized to balance tradeoffs between computational efficiency and accuracy. Finally,

when DNA guide or RNA fuel strands go from bound to unbound through cleavage or rupture, their

pairing events are not added immediately to v.BindEventList. Accordingly, there is a lag between when a

guide strand becomes available for pairing and when the simulation allows it to form new tethers via

v.BindEventList (specifically, this lag is the duration between the strand becoming available and the next

trigger of association times calculations). Future versions of RoloSim could remedy this limitation.

Many initialization steps and checks were optimized for spherical HPDMs. When additional geometries

were added, they were generally run and evaluated for proper function. However, the entire parameter

space with non-spherical geometries was not explored, so users may encounter unforeseen issues when

simulating non-spherical geometries. Here are some potential sources of errors that may arise when

tinkering with non-sphreical geometries:

• The calculations of RollLimit and dTheta, as well as checks to determine whether to call

UpdateHighMid.m, have not been tailored to non-spherical body types, which may

perturb some functions. However, because the parameter s.Diameter is also used to

describe type 2 and 3 HPDMs (dimers and rods with spherical caps), these calculations

should coincidentally by okay. However, type 4 HPDMs (polygonal prisms) do not use

the parameter s.Diameter, so if s.RadCurve is larger than the (otherwise arbitrary)

s.Diameter parameter, then there may be issues wherein strands aren’t properly

exchanged between ranges when they need to be.

• The time-jump function in ApplyStochasticChanges could potentially cause the

simulation to jump out beyond the prescribed end time, which could create additional

problems elsewhere.

S24

Supplemental Figures to Accompany User Guide

Figure S2: Initialization of RNA and DNA coordinates (part 1).

First, RNA fuel coordinates are randomly generated at a density of 50,000 molecules/µm2. Each RNA

strand is assigned a unique integer index. Two separate arrays are used to track RNA molecules. The first

is the RNA strand coordinate list (denoted by the brown rectangle), which has the x-, y-, and z-

coordinates of each RNA molecule. A fuel strand’s position in this list corresponds to its index. The

second is the RNA index cell array (RICA, denoted by the pink square). The RICA, which is used to

determine which RNA molecules are within a certain area, is constructed by dividing all fuel molecules

into 10 nm bins and storing their indices in corresponding cells. For a 1000 nm × 1000 nm surface, the

RICA is a 100 × 100 bin cell array and each cell in the array contains zero or a few indices corresponding

to the RNA strands that are within the corresponding 10 nm × 10 nm gridpoint. When the simulated

HPDM comes within a set distance of a boundary, the surface is expanded by randomly generating new

coordinates in the neighboring region, appending those coordinates to the to the strand coordinate list, and

expanding the RICA accordingly. Next, DNA strands are randomly generated on a spherical surface – see

Fig. S3 below for initialization of DNA strand-related arrays.

S25

Figure S3: Initialization of RNA and DNA coordinates (part 2 – continued from previous

supplemental figure).

Each DNA strand is assigned a unique integer index. DNA strand x-, y-, and z-coordinates are stored in a

single list (denoted by brown rectangle) and a strand’s position in this list corresponds to its index.

Furthermore, DNA strand coordinates are divided into three groups according to height. Coordinates with

height above z2 are in the non-interacting range (dark gray zone on particle), while strands with height

between z1 and z2 are in the intermediate range (light gray zone on particle). The indices of strands in

each of these zones is kept in a corresponding list (denoted by dark and light gray rectangles).

Coordinates with height below z1 are classified as in the “interacting range” (green zone on particle).

Indices of strands in the interacting range are also stored in a list, along with their x- and y- grid points

(corresponding to the grid with 10 nm spacing developed for the RICA) and information on where to find

data on that strand’s potential interactions with RNA strands in the PPL (see the next figure for more

information).

S26

Figure S4: Keeping track of potential DNA-RNA pairs (part 1).

There are a very large number of RNA molecules that a single DNA strand can potentially form a tether

with, and vice-versa. To make the calculation of association rates computationally tractable, we utilize a

cutoff system and only consider potential DNA-RNA pairs that are within a certain distance of each other.

However, even with cutoffs there can be millions of potential pairs. Here, we illustrate how we manage

all of these calculations. For simplicity, we consider a single DNA molecule which has just been released

from a tether via RNase H-mediated cleavage. First, the DNA strand’s grid point is determined. Next, the

RICA is used to obtain a list of all RNA molecules within two grid points of the DNA strand. Then, the

squared-distance (r2) between the DNA strand and each of the RNA strands in this list is calculated. An

Nx3 list (where N is the number of RNA molecules within interaction range) containing DNA and RNA

indices and r2 is then constructed (denoted by light gray rectangle). Finally, this list is inserted into the full

potential pairs list (PPL, denoted by gold and dark gray rectangle) at a position which is determined by a

pointer value. Because the PPL is so large, we pre-allocate a significant amount of storage for the PPL,

and the constructed list is inserted into the first empty space in the PPL. Following insertion of the

constructed list, the pointer is then updated to point to the next empty space in the PPL so that this process

can be repeated for the next guide DNA strand that enters interaction range. Finally, an entry is appended

to the list of DNA strands in interaction range, which includes the DNA strands index, its x- and y- grid

points, the position of the strand’s segment of the PPL list, and the number of potential RNA pairing

partners (these last two are used to extract information from the PPL). A similar treatment is applied

towards 1) all guide strands in the interaction range during initialization, 2) guide strands following

rupture, and 3) guide strands that enter the interaction range from the intermediate range.

S27

Figure S5: Keeping track of potential DNA-RNA pairs (part 2).

Here we show the treatment of variables after a DNA strand is paired. First, the indices of the newly

paired DNA and RNA strands are added to the end of the list of DNA-RNA pairs (denoted by purple

rectangle). Next, the guide strand’s index is found in the list of interaction-range DNA. The guide strand’s

PPL list position and number of entries (which are stored in the list of DNA strands in interaction range)

are used to overwrite all of the guide strand’s pairing information in the PPL with dummy values. The

guide strand’s information in the list of DNA strands in interaction range is then removed.

S28

Figure S6: Z-height and rolling behavior of HPDMs simulated with RoloSim

a) A plot of z-height (𝑃𝑧 − 𝑅) over time from a RoloSim simulation at default conditions. The plot shows

small fluctuations within a narrow range between ~6 nm and ~ 8 nm. The exceptions to this behavior

occur at 1) the beginning of the simulation, when the HPDM comes into closer contact because the

polyvalency increases to a very large value due to initial adhesion, and 2) towards the end of the

simulation, when the HPDM reaches heights exceeding 10 nm because of detachment caused by depletion

track-entrapment. b) A histogram of all z-height values shown in a. c) A scatterplot of all HPDM

positions during the simulation, with color denoting simulation time. Two black arrows (marked i and ii)

denote two stretches of near-linear motion, which were analyzed for rolling behavior. d) Four plots show

that the HPDM undergoes pure rolling (i.e. no-slip rolling) during the periods marked in c as i (top two

plots) and ii (bottom two plots). For each of the two rows, the left plot shows both the translational

displacement (blue, solid line) and the angular displacement (orange dashed line – measured by

calculating the angle of HPDM rotation around a horizontal vector perpendicular to the arrows marked i

or ii and multiplying that angle by the radius of the HPDM). For each of the two rows, the right plot

shows the ratio of the translational and angular displacement. Both plots converge to ~1, which suggests

that motion is, on average, no-slip.

S29

Supplemental Note 1: RoloSim Engineering Objectives
We had four specific goals that we sought to use RoloSim to accomplish in this work. The first one is

broad while the second, third, and fourth focus on specific potential applications of HPDMs.

1) To understand the scaling properties of autochemophoretic HPDM motion. HPDMs have

potential to be versatile tools for molecular recognition, nanopatterning, and force generation. In order to

engineer HPDMs to serve specific roles, it is important to know how controllable HPDM properties –

such as diameter, RNase H concentration, guide and fuel strand surface density, and tether duplex and

spacer length – affect HPDM translocation properties such as force and velocity. RoloSim offers the

opportunity to measure these scaling properties in silico. While there is no guarantee that RoloSim results

are experimentally accurate, RoloSim does have value in that it offers a pure environment that is free of

experimental error, heterogeneity between experiments, and measurement noise. RoloSim also allows for

the exploration of HPDM properties in high-throughput (i.e. the testing of large numbers of conditions in

parallel), which can generate hypotheses that can later be tested experimentally.

2) To determine under what conditions HPDMs can be used for single molecule sensing. The

ability to perform molecular detection in a rapid, reliable, manner in resource limited settings is critical

for responding to disease outbreaks, assessment of food and water quality, and for medical decision

making. However, molecular detection often require samples to be transported to dedicated laboratories

with specialized equipment for testing. Conversely, most field-based sensors do not provide appropriate

molecular sensitivity. HPDMs have potential to address these issues, by serving as single molecule

biomarker sensors. In principle, if 𝐹𝐻𝑃𝐷𝑀 can be reduced while preserving HPDMs’ processivity and

speed, they could be stalled by individual biomarkers. This would allow HPDMs to serve as tools for

rapid, sensitive, on-site molecule detection using smart phone-based readers1. We sought to use RoloSim

to understand how to reduce 𝐹𝐻𝑃𝐷𝑀 to levels that would make HPDMs suitable for single molecule

sensing.

3) To measure force generation by non-spherical HPDMs. HPDMs have significant potential to serve

as motors powering nano- and micromachines. However, the large size of existing HPDMs is a hindrance

that will prevent future nanoscale applications. The specific importance of pN-scale force generation at

the nanoscale is clearly illustrated by biological systems; molecular motors such as myosin and kinesin

power countless tasks by generating and sustaining 1-10 pN of force via ATP-fueled powerstrokes.

Currently, we do not have the means by which to engineer similar functionalities from the bottom-up, and

so nanotechnological tools are largely viewed from a chemical rather than mechanical paradigm. The

field of nanorobotics is still relatively new and there is a large need for demonstrations of technology that

can perform fundamental tasks such as force generation. By miniaturizing force-generating HPDMs to the

nanoscale, we can push the field forward and pave the way for the next generation of rationally-designed

nanoscale mechanical systems. By designing RoloSim to allow for non-spherical HPDM geometries, we

can understand how rod-shaped HPDMs – which can have the same surface contact area as spherical

HPDMs with only a small fraction of the volume – can be used to scale the large force-generating

potential of HPDMs down to the nanoscale (Fig. S7).

S30

Figure S7: Depiction of the size difference between rod-shaped and spherical HPDMS

A crystal structure of a kinesin motor2 is shown for scale.

4) To understand how to “steer” HPDMs in a massively parallel fashion: The HPDM-substrate

contact zone is restricted to a width of <400 nm and this could potentially be reduced. This narrow,

sharply bounded footprint suggests that HPDMs can serve as highly selective tools for “writing”

nanoscale patterns with high precision. Furthermore, the ability to deposit streptavidin into depletion

tracks using mechanical bond rupture as a selection mechanism3 also demonstrates that HPDMs can

perform additive, in addition to subtractive, lithography. If HPDM motion can be controlled using an

externally-controlled force field, then all HPDMs can, in principle, be directed to follow the same path in

parallel. Given the small size of an individual depletion track, HPDMs may be capable of performing

relatively high-resolution nanolithography. By designing RoloSim to allow for the incorporation of

externally-applied forces, we can thus understand how to steer HPDMs for massively parallel

nanolithography.

S31

Supplemental Note 2: Calculation of gravitational and electrostatic repulsion

forces

The electrostatic repulsion between a DNA-coated microsphere and a nucleic acid-coated planar surface

has been described previously4. The electrostatic repulsion potential energy (𝐸𝑒𝑙) vs. height (ℎ, measured

from the lowest point of the microsphere) can be described when ℎ is much larger than the Debye

screening length (𝜆𝐷) using a two-parameter exponential function:

𝐸𝑒𝑙 = 𝐸𝑒𝑙,0 exp (−
ℎ

𝜆𝐷
) (1).

The 𝜆𝐷 parameter is defined by the equation:

𝜆𝐷 = √
𝜀𝑟𝜀0𝑘𝐵𝑇

∑ (𝑧𝑖𝑒
−)2𝐶𝑖𝑎𝑙𝑙𝑖𝑜𝑛𝑠 (103

𝑚
𝐿
)𝑁𝐴

(2)

Where 𝜀𝑟 = 78.5 is the dielectric constant for water, 𝜀 = 8.85 × 10−12
𝐶2

𝐽𝑚
 is the permittivity of free

space, 𝑘𝐵 = 1.38 × 10
−23 𝐽

𝐾
 is Boltzmann’s constant, and 𝑇 = 298𝐾 is room temperature, 𝑒− =

1.6 × 10−19𝐶 is the charge of an electron, 𝑁𝐴 is Avogadro’s number, and 𝑧𝑖 and 𝐶𝑖 are the charge and

molar concentration (respectively) of the ith ion. Plugging in values with 25 mM Potassium Phosphate,

37.5 Tris HCl, and 1.5 mM MgCl2 and simplifying yields:

𝜆𝐷 = 1.18𝑛𝑚 (3)

The 𝐸𝑒𝑙,0 parameter is calculated as:

𝐸𝑒𝑙,0 = 64𝜋𝑅𝜀𝑟𝜀0 tanh (
𝑒−𝛹𝑠𝑝ℎ𝑒𝑟𝑒

4𝑘𝐵𝑇
) tanh (

𝑒−𝛹𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
4𝑘𝐵𝑇

)(
𝑘𝐵𝑇

𝑒−
) (4)

Where the surface potential, Ψ, can be calculated from the surface charge density, 𝜎, and the ionic

strength, 𝐼:

Ψsphere = sinh
−1 (

𝜎𝑠𝑝ℎ𝑒𝑟𝑒

2√𝜀𝑟𝜀0𝑘𝐵𝑇𝐼𝑁𝐴
)(
2kBT

e−
) (5𝑎)

Ψsubstrate = sinh
−1 (

𝜎𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

2√𝜀𝑟𝜀0𝑘𝐵𝑇𝐼𝑁𝐴
)(
2kBT

e−
) (5𝑏)

where

𝜎𝑠𝑝ℎ𝑒𝑟𝑒 = 𝑒𝑔𝜌𝑔𝑢𝑖𝑑𝑒 (6𝑎)

𝜎𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 = 𝑒𝑓𝜌𝑓𝑢𝑒𝑙 + 𝑒𝑎𝜌𝑎𝑛𝑐ℎ (6𝑏)

and

𝐼 = ∑
𝑧𝑖
2𝐶𝑖
2

𝑎𝑙𝑙𝑖𝑜𝑛𝑠

(7)

S32

where 𝑒𝑔 = 30𝑒
− is the charge per guide strand, 𝜌𝑔𝑢𝑖𝑑𝑒 = 91,000𝜇𝑚

−2 is the HPDM surface density of

guide strands, 𝑒𝑓 = 35𝑒
− is the charge per fuel strand, 𝜌𝑓𝑢𝑒𝑙 = 50,000𝜇𝑚

−2 is the substrate surface

density of RNA fuel strands, 𝑒𝑎 = 30 is the charge per DNA anchor strand (anchor strands are used to

attach fuel strands to the substrate), and 𝜌𝑎 = 100,000𝜇𝑚
−2 is the substrate surface density of anchor

strands. Plugging in parameters and solving yields:

𝐸𝑒𝑙,0 = 𝑅 (1.32 × 10
−11

𝐽

𝑚
) (8)

The gravitational force acting upon a sphere (minus the force of buoyancy) can be described as a function

of ℎ using the energy potential (𝑈𝑔):

𝐸𝑔 = ℎΔ𝜌𝑔
4

3
𝜋𝑅3 (9)

where Δ𝜌 = 995𝑘𝑔/𝑚3 is the difference in density between the microsphere (silica) and surrounding

media (water) and 𝑔 = 9.81𝑚/𝑠2 is the gravitational constant. Plugging in parameters and simplifying

produces

𝐸𝑔 = (40,886
𝐽

𝑚4
)𝑅3ℎ (10).

The default HPDM setting is 𝑅 = 2.5 × 10−6𝑚. Plugging this in, adding the 𝐸𝑒𝑙 and 𝐸𝑔 terms, and

rescaling energy to multiples of 𝑘𝐵𝑇 yields:

𝐸𝑔 + 𝐸𝑒𝑙 = 8,024exp (−
ℎ

1.18𝑛𝑚
) + 0.155

ℎ

𝑛𝑚
(11)

S33

Supplemental Note 3: Worm like chain (WLC) calculations of tether

mechanics
To model the relationship between tether extension (𝑟) and energy (𝐸𝑡𝑒𝑡ℎ), we first adopted a model from

our previous work3. Specifically, we used an approximation of the worm-like chain (WLC) model5 to

calculate the relationship between force (𝐹) and 𝑟:

rWLC(F, L0, P) = L0

(

 4

3
+

4

3√
FP
kBT

+ 1

−
10e

√900
kBT
FP

4

√
FP
kBT

(e
√900

kBT
FP

4

− 1)

2 +
(
FP
kBT

)
1.62

3.55 + 3.8 (
FP
kBT

)
2.2

)

(12)

where P is the persistence length, L0 is the chain contour length, and kBT = 4.114pNnm is thermal

energy at room temperature. A tether is composed of double stranded DNA (dsDNA), single stranded

DNA (ssDNA), and a double stranded DNA-RNA hybrid duplex. P and L0 (per base) are summarized in

table S1. Therefore, the relationship between F and 𝑟 for a tether composed of ssDNA, dsDNA, and

DNA-RNA hybrid duplexes can be calculated using the equation:

r = rWLC(F, L0,ssDNA, PssDNA) + rWLC(F, L0,dsDNA, PdsDNA) +

rWLC(F, L0,DNA−RNA, PDNA−RNA) (13)

and the energy, in units of pN ∗ nm can be calculated by numerically integrating the force-extension

curve from0 to 𝑟 (Fig. S8):

Eteth = ∫F(r′)

r

0

𝑑r′ (14)

Table S1 – Worm-like-chain modeling parameters and segments*

Polymer Type

Persistence

Length Length per base Segment Name

Segment length

(nt or bp)

DNA-DNA

duplex
53 nm 0.34 nm Anchor 15

DNA-RNA

duplex
100 nm 0.33 nm Pairing region 15

Single-stranded

DNA
1.07 nm 0.60 nm

Surface spacer 15

Particle spacer 15

Inter-duplex

spacer
5

DNA-RNA

duplex – transition

state

2.7 nm 0.53 nm
Pairing region –

tst
15

*Parameter estimates were taken directly from reference 6. When multiple estimates were available, we

used the estimate for the highest ionic strength condition available.

S34

The tether energy-extension curve calculated using this method, as well as energy-extension cure

calculated for 9-15 bp lock duplexes (which were not simulated for this study but are nonetheless possible

to simulate with RoloSim). In addition, an accurate, computationally efficient is shown:

𝐸𝑡𝑒𝑡ℎ = (0.91𝑘𝐵𝑇)(exp(0.0045𝑟
2) − 1)

Figure S8: Tether WLC calculation and approximation

a) Depiction of a tether with end-to-end extension, r. b) Depiction of a DNA-DNA lock with a shorter

duplex. c) Tether energy (𝐸𝑡𝑒𝑡ℎ) as a function of 𝑟. Calculations for various DNA-DNA locks are also

shown. Calculations were performed using the Petrosyan approximation5. Circles show simple

approximation used in this work. d) Absolute error of the simple approximation (with respect to the

Petrosyan approximation), showing that the error does not exceed 0.35𝑘𝐵𝑇 at relevant extensions of 𝑟 ≤

25𝑛𝑚.

This representation can accurately represent tether mechanics as large extensions, but

monotonically increases and thus fails to report resistance to compression (due to confinement within a

small volume) at very small extension. To compensate for this issue, we adapted a Monte Carlo

simulation method presented by Becker, Rosa, and Everaers7 to understand 𝐸𝑡𝑒𝑡ℎ with both extension and

compression.

In this method, each ssDNA nucleotide (nt) or dsDNA basepair (bp) was represented as a point at

fixed distance from its neighbors (the length per base shown in Table S1), and then a series of 107

S35

iterations were applied to the construct via the Metropolis-Hastings algorithm. Each iteration consisted of

either a crankshaft or pivot attempt (randomly selected). A pivot entails selection of a random point in the

tether, followed by a counter-clockwise rotation of all downstream points (where upstream means closer

to the point at which the tether is anchored to the substrate) around a random axis by an angle randomly

sampled from the range ±50°. A crankshaft entails selection of two points between two and four bases

away from eachother and rotation of all points between them by an angle randomly sampled from the

range ±50°. The construct’s post-attempt free energy was calculated as the sum of the bending energy of

all non-terminal points. The bending energy for the 𝑖𝑡ℎ non-terminal point (e.g. a point that is bound to at

least two additional points), 𝐸𝑏𝑒𝑛𝑑,𝑖, with 3D coordinate vector 𝒓𝒊 is:

𝐸𝑏𝑒𝑛𝑑,𝑖 = −𝑘𝑠,𝑖
(𝒓 𝒊 − 𝒓𝒊←) ∙ (𝒓𝒊 − 𝒓𝒊→)

|𝒓𝒊 − 𝒓𝒊←||𝒓𝒊 − 𝒓𝒊→|
(15)

where 𝑘𝑠,𝑖 is the point’s bending spring constant, which is related to the persistence length, 𝐿𝑝 via the

relation:

𝐿𝑝 =
−|𝒓 𝒊 − 𝒓𝒊←|

ln (𝑐𝑜𝑡ℎ(𝑘𝑠) −
1
𝑘𝑠
)

(16)

and 𝒓𝑖← and 𝒓𝑖→ are the 3D coordinate vectors for the nearest upstream and downstream points,

respectively, and |𝒓 𝒊 − 𝒓𝒊←| is the length per base. Next, the bending energy was summed along the

tether and the change in energy from the last iteration, Δ𝐸𝑏𝑒𝑛𝑑, was used to determine whether the pivot

or crankshaft was accepted. Specifically, the pivot/crankshaft was accepted if Δ𝐸𝑏𝑒𝑛𝑑 , < 0 or, in the

scenario that Δ𝐸𝑏𝑒𝑛𝑑 > 0, if exp(−Δ𝐸𝑏𝑒𝑛𝑑) was greater than a randomly-generated number sampled from

the range of 0 to 1. To reflect attachment of the tether to the substrate, Δ𝐸𝑏𝑒𝑛𝑑 was set to ∞ if any point in

the tether exhibited a z-position below 0. Finally, to calculate 𝐸𝑡𝑒𝑡ℎ from the Monte Carlo simulation

result, the 107 iterations were binned into a 2-D histogram of end-to-end tether extension (𝑟) and the z-

height of the end of HPDM-bound end of the tether (𝑟𝑧) (Fig. S9, left). Finally, we took the logarithm of

the number of iterations in each bin to obtain 𝐸𝑡𝑒𝑡ℎ as a function of 𝑟 and 𝑟𝑧. Finally, we developed a

simple, accurate approximation that accurately fits the Monte Carlo simulation data (Fig. S9, right) for

𝐸𝑡𝑒𝑡ℎ as a function of the tether’s end-to-end extension, 𝑑:

𝐸𝑡𝑒𝑡ℎ ≈ 𝜅𝑡 exp(Κ𝑟
2) +

𝜅𝑐
𝑟𝑧

(17𝑎)

where 𝜅𝑡 and 𝜅𝑐 are spring constants for tension and compression, respectively, Κ (in units of nm-2) is a fit

parameter that is related to the persistence and contour lengths of the tether, and 𝑟𝑧 is the tether’s

extension in the z-direction. While the first term reflects an energetic cost for extending the tether, the

second term reflects an energetic cost for compressing the tether into a small volume between the particle

and the substrate. In both cases, the energetic cost is entropic in nature because extension and

compression both reduce the tether’s conformational mobility.

S36

Figure S9: 𝑬𝒕𝒆𝒕𝒉 measured using WLC Monte Carlo simulations

Monte Carlo simulations7 were performed with 100,000 timesteps of the Metropolis-Hastings algorithm

described above. At each timestep, tether extension (𝑟) and the z-position of the DNA-strand’s anchor

point on the particle (𝑑𝑧) were recorded at each timepoint. Datapoints were grouped into 1𝑛𝑚 × 1𝑛𝑚

bins and the energy of each bin was calculated as 𝐸 = −log(𝑛/𝑟2), where 𝑟2 accounts for the increasing

surface area with respect to 𝑟 (note that the 𝑟2 denominator allows for 𝐸𝑡𝑒𝑡ℎ > 0 to be represented on the

graph). We found that our result (left) fit accurately to a simple computationally-efficient approximation:

𝐸𝑡𝑒𝑡ℎ ≈ (0.36𝑘𝐵𝑇)(exp(0.0045𝑟
2) − 1) +

(1.4𝑘𝐵𝑇𝑛𝑚)

𝑑𝑧
(17𝑏)

The energy of the transition state for tether formation, 𝐸𝑡𝑠𝑡, was calculated using a similar WLC-based

approach (the numerical approximation, not the Monte Carlo simulation approach – see previous work3)

by calculating the force-extension curve for a tether with a DNA-RNA transition state duplex (which has

WLC parameters from single- or double-stranded oliconucleotids6).

r = rWLC(F, L0,ssDNA, PssDNA) + rWLC(F, L0,dsDNA, PdsDNA) +

rWLC(F, L0,DNA−RNA
∗ , PDNA−RNA

∗) (18)

where transition state WLC parameters are shown in Table S1. Again, the energy, in units of pNnm can

be calculated by numerically integrating the force-extension curve from0 to 𝑑:

Etst = ∫F(r)

d

0

𝑑r (19)

Finally, the association rate, 𝑘ℎ𝑦𝑏, can be calculated as a function of the inter-strand distance, 𝑑, by using

the Bell model (Fig. S10):

𝑘ℎ𝑦𝑏 = 𝑘ℎ𝑦𝑏,0 exp (
−𝐸𝑡𝑠𝑡
𝑘𝐵𝑇

) (20)

S37

Figure S10: Depiction and calculation of association

a,b) Depiction of strand association, with the transition state duplex shown in purple (for DNA-RNA) or

green (for DNA-DNA). c) WLC calculation of the exponent of tether energy (which is proportional to the

tether association rate) as a function of the distance between strands. The calculation is shown for tethers

of various lengths. A simple approximation described above is shown with black circles. d) Error of

approximation as a function of 𝑑, showing less than 1% error at all relevant distances.

We found that, like with the tether calculation, 𝐸𝑡𝑠𝑡 could be accurately represented using a

computationally efficient approximation:

𝐸𝑡𝑠𝑡 ≈ 𝜅𝑡
∗ exp(Κ∗𝑑2) (21)

where 𝜅𝑡
∗ = 0.8769 and Κ∗ = 0.00356 are analogous to 𝜅𝑡 and Κ, but are specific to the transition state.

S38

Supplemental Note 4: Optimization of RoloSim
We initially sought to obtain optimal parameters that would create the greatest resemblance between the

RoloSim result and experimental observations. To summarize the process, we first sought to obtain a set

of mechanical parameters (𝑘𝑐, 𝑘𝑡, and 𝑘𝑡
∗ - we always used 𝐾 = 0.0045) as well as the 𝑘𝑜𝑛,0/𝑘𝑐𝑙𝑣𝑔 ratio

in order to reproduce “equilibrium” quantities of HPDM translocation. We then scaled 𝑘𝑜𝑛,0 and 𝑘𝑐𝑙𝑣𝑔

together to accurately reproduce the dynamic properties of HPDM translocation.

Metrics evaluated during optimization

We sought to optimize our RoloSim parameters to accurately reproduce the following observable

quantities:

1. Depletion track width: depletion track width was previously quantified1 by taking linescans of

depletion tracks and quantifying the full-width half maximum (FWHM) of the tracks. Previously,

we utilized structured illumination microscopy (SIM, a superresolution imaging technique) to

obtain an estimate of 𝐹𝑊𝐻𝑀 = 380𝑛𝑚. As a best-attempt to replicate this scenario, we used an

automated process in which simulated data is used to create a mimic SIM image and then

linescans are taken at defined intervals along the simulated HPDM’s trajectory (Fig. S11).

2. Depletion track depth: we generally find that roughly 50% of the fuel strands beneath the HPDM

are cleaved1,3,8. While this estimate is not as precise as the FWHM measurement, the finding that

a substantial fraction (~50%) of fuel strands in depletion tracks remain uncleaved is

experimentally reproducible. We quantify width and depth together by fitting linescans of

simulated SIM images to inverted Gaussian functions. We then calculate the FWHM and depth

directly from the parameters of the best-fit Gaussian (Fig. S11).

Figure S11: Automated analysis of simulated depletion tracks

An automated analysis method was used to analyze depletion track properties. Briefly, The trajectory was

queried at an interval of every 2,000 timepoints. The first and last query points were then excluded to

avoid sampling the track at the ending or beginning of the image. For each query point, all trajectory

points within a 550 nm radius were collected. From these trajectory points, two durations were recorded:

the time between the first and the last point, and duration of the continuous set of trajectory points that the

query point belongs to. If the ratio of these durations is greater than 1.1, the query point is discarded. This

process is intended to exclude query points where the track switched back on itself (linescans of such

S39

query points could artificially bias the width measurement upwards). Each of the remaining query points

was then used to draw a linescan 733 nm in length and with an orientation that is perpendicular to the

major axis of the set of trajectory points within the 550 nm radius cutoff. This linescan was then fit to a

Gaussian function, which was then analyzed to extract the track depth (depth of the Gaussian) and width

(FWHM of the Gaussian).

3. Path persistence length: we previously found that HPDMs exhibit persistent motion at

intermediate timescales (i.e. HPDMs generally appear to move in a straight line when observed

for durations on the order of tens of seconds)3. At longer timescales of several minutes or more,

the directionality of spherical HPDMs is randomized. Our simulated trajectory should also exhibit

these properties. This intermediate timescale persistence can be quantified using the path

persistence length (𝐿𝑡𝑟𝑎𝑗) metric9, which is analogous to the persistence length parameter of the

WLC model and denotes the distance across which a trajectory’s directionality remains

correlated. Experimental measurements of 𝐿𝑡𝑟𝑎𝑗 are generally on the order of 1-2𝜇𝑚 (Fig. S12).

However, because this quantification of 𝐿𝑡𝑟𝑎𝑗 includes contributions from some HPDMs that are

stalled due to nonspecific interactions between the HPDM and the surface, we take 2𝜇𝑚 as our

lower-bound cutoff.

Figure S12: Experimental measurement of path persistence (𝑳𝒕𝒓𝒂𝒋).

a) Depiction of Δ𝜃 and step length (inset) for a timeshift of 5 seconds when the HPDMs are imaged at a

5-second interval. Five representative HPDM positions are shown, along with four “steps” and

denotations of Δ𝜃 measurements. b) Same as a, but for a timeshift of 10 seconds. c) 𝐿𝑡𝑟𝑎𝑗 – which is

calculated as the average step length divided by ⟨Δ𝜃⟩2 – as a function of timeshift for 18 individual

HPDMs, as well as the median of the 18 HPDMs (thick black curve). At short timescales, 𝐿𝑡𝑟𝑎𝑗 appears

to be artificially low, which is an expected result of localization error. At intermediate timescales (~1-5

minutes) the median 𝐿𝑡𝑟𝑎𝑗 value converges to a range of ~1 − 2𝜇𝑚. Trajectories were calculated by re-

S40

analyzing supplemental movie 1 from ref. 1 using an improved particle tracking code presented in ref. 3

(and used in this work).

4. Stall force: in previous experiments3, we quantified the force generated by HPDMs (𝐹𝐻𝑃𝐷𝑀) as

𝐹𝐻𝑃𝐷𝑀 ≈ 150𝑝𝑁. This measurement was obtained using high throughput particle tracking

experiments involving hundreds of individual HPDMs. Because this level of throughput is not

practical for RoloSim, we adopted an alternative approach. Briefly, we restart a completed

RoloSim simulation at a random timepoint and “pin” the HPDM by making one random tether

unbreakable. The simulation is then allowed to continue until the HPDM “stalls”. Stalling is

determined to have occurred when the polyavalency (the number of tethers) drops to five, which

we have found is too low to ever occur under normal conditions. A 1-second smoothing average

is then applied to the force vs. time curve, and the maximum force of this smoothed curve is then

determined to be the stall force. This process is repeated several dozen times to obtain an average

estimate of 𝐹𝐻𝑃𝐷𝑀 (Fig. S13).

Figure S13: RoloSim-based estimation of 𝑭𝑯𝑷𝑫𝑴

Because the previous experimental methods for 𝐹𝐻𝑃𝐷𝑀 estimation require very high throughput, we

developed an alternative method to estimate 𝐹𝐻𝑃𝐷𝑀 using RoloSim. In this method, a completed

simulation is restarted at a random timepoint, and then a random tether is selected from the set of existing

tethers at that time point. That tether is set as an indestructible tether, that can be neither cleaved nor

ruptured. The simulation is then allowed to continue until the polyvalency drops below five. The tether’s

extension vs. time curve is stored (left). This curve is then used to calculate a force vs. time curve (right),

which is then smoothed with a 1-second rolling average. The maximum value of the smoothed curve is

then recorded as the stall force. This process is repeated ~100 times per condition to obtain a robust

estimate of 𝐹𝐻𝑃𝐷𝑀.

S41

5. Average velocity (𝑣𝑎𝑣𝑔): we generally find that the average HPDM velocity is roughly 1.3𝜇𝑚/

𝑚𝑖𝑛. This estimate lumps contributions from mobile HPDMs as well as low-mobility HPDMs

that have become “entrapped” within their own depletion tracks (Fig. S14).

Figure S14: Experimental measurement of average velocity, 𝒗𝒂𝒗𝒈

Average HPDM velocity (𝑣𝑎𝑣𝑔) as a function of timeshift for 18 individual HPDMs, as well as the

median of the 18 HPDMs (thick black curve). At short timescales, 𝑣𝑎𝑣𝑔 appears to be artificially low,

which is an expected result of localization error. At intermediate timscales (~1 to 5 minutes) the median

𝑣𝑎𝑣𝑔 value converges to ~1.3𝜇𝑚/𝑚𝑖𝑛. Trajectories were calculated by re-analyzing supplemental movie

1 from ref. 1 using an improved particle tracking presented in ref. 3.

6. The kinetic rate constant for RNase H-mediated hydrolysis (𝑘𝑐𝑙𝑣𝑔): through experiments, we

previously estimated 𝑘𝑐𝑎𝑡 = 25min
−1 = 0.4𝑠−1, where 𝑘𝑐𝑎𝑡 is the maximal kinetic rate

constant for RNase H-mediated cleavage according to the Michalis Menten kinetic framework

(i.e. 𝑘𝑐𝑙𝑣𝑔 = 𝑘𝑐𝑎𝑡 when [𝑅𝑁𝑎𝑠𝑒𝐻] = ∞). Accordingly, the 𝑘𝑐𝑙𝑣𝑔 value obtained from our

optimization process should not exceed this value.

These six metrics can be divided into three categories: depletion track width and depth are timescale-

independent, meaning that they are equilibrium properties that are calculated without any consideration of

the dynamics of HPDM translocation; path persistence length and 𝐹𝐻𝑃𝐷𝑀 both exhibit a light timescale-

dependence but can be assumed to be largely timescale independent (𝐿𝑡𝑟𝑎𝑗 depends slightly on the

selected step length, Fig. S12, and the simulated 𝐹𝐻𝑃𝐷𝑀 calculation depends on a 1-second smoothing

average); and 𝑣𝑎𝑣𝑔 and 𝑘𝑐𝑙𝑣𝑔 are completely timescale-dependent quantities.

Optimization of mechanical parameters

We started the optimization process by using parameters calculated according to the WLC model.

Specifically, we found that 𝐾 = 0.0045 allowed for an accurate representation of the tether’s force-

extension curve. While the Petrosyan approximation yielded best-fit values of 𝜅𝑡 = 0.91𝑘𝐵𝑇 and 𝜅𝑐 =

0𝑘𝐵𝑇, our Monte Carlo WLC simulations produced best-fit values of 𝜅𝑡 = 0.36𝑘𝐵𝑇 and 𝜅𝑐 =

S42

1.4𝑘𝐵𝑇𝑛𝑚. This result suggested that tethers, when bound on either end to two surfaces, are easier to

extend than would be expected from the conventional WLC model. The conventional WLC model

calculation for the association transition state also yielded a best-fit of 𝑘𝑡
∗ = 0.88𝑘𝐵𝑇 and 𝐾∗ = 0.0036.

The disparity between the conventional and Monte Carlo WLC results suggested that a similar disparity

may exist for the transition state tether. Therefore, we varied 𝜅𝑡
∗ across two orders of magnitude (from

0.088 to 8.8). We also varied 𝑘𝑜𝑛,0/𝑘𝑐𝑙𝑣𝑔 across two orders of magnitude. In total, we ran one 60 minute

simulation for most combinations of 13 𝜅𝑡
∗ values and 13 𝑘𝑜𝑛,0/𝑘𝑐𝑙𝑣𝑔 values (several combinations were

not simulated according to user choice, particularly in the extremes of the parameter space). Of these

simulations, a total of 110 finished successfully. For each condition that finished successfully, we

quantified track width and depth, 𝐿𝑡𝑟𝑎𝑗, and 𝐹𝐻𝑃𝐷𝑀 and then adjusted the timescale of the simulation (by

adjusting 𝑘𝑜𝑛,0 and 𝑘𝑐𝑙𝑣𝑔, and Δ𝑡 post-hoc) to obtain 𝑣𝑎𝑣𝑔 = 1.3𝜇𝑚/𝑚𝑖𝑛 (we initially ran simulations

with an arbitrarily-selected 𝑘𝑐𝑙𝑣𝑔 = 60𝑚𝑖𝑛
−1 = 1𝑠−1). Following timescale adjustment, we also

quantified 𝑘𝑐𝑙𝑣𝑔. Finally, we quantified the steady-state polyvalency of each HPDM by measuring the

number of tethers at 1-second intervals throughout the simulation.

The results of these simulations, shown in Fig. S15 and Fig. S16, show three general behaviors. At low

𝑘𝑜𝑛,0/𝑘𝑐𝑙𝑣𝑔 and high 𝜅𝑡
∗, tether association is much slower than cleavage, which results in a low steady-

state polyvalency, very low force (𝐹𝐻𝑃𝐷𝑀 < 1𝑝𝑁) diffusive motion (i.e. 𝐿𝑝 < 0.4𝜇𝑚) and a lack of a

discernable depletion track. At high 𝑘𝑜𝑛,0/𝑘𝑐𝑙𝑣𝑔 and low 𝜅𝑡
∗, association is much faster than cleavage,

resulting in a wide, deep depletion track (with 100% consumption of all strands in the HPDM’s path),

high force (𝐹𝐻𝑃𝐷𝑀 > 10𝑝𝑁), and high persistence (𝐿𝑝 > 2𝜇𝑚). The third category exhibited

intermediate properties, with depletion track depths between 10% and 90%, 𝐹𝑊𝐻𝑀s close to 400 nm,

and 𝐿𝑡𝑟𝑎𝑗 within the ideal range of 1𝜇𝑚 < 𝐿𝑡𝑟𝑎𝑗 < 2𝜇𝑚.

S43

Figure S15: Depletion tracks from simulations run with varying 𝜿𝒕
∗ and 𝒌𝒐𝒏,𝟎/𝒌𝒄𝒍𝒗𝒈 values

A 13×13 grid of simulated depletion track images at different parameter combinations as denoted on the

top and left. Not all conditions are represented due a combination of 1) early termination of a small

number of simulations due to various computational errors (some of which were corrected following this

round of optimization), and 2) efficient selection of conditions to conserve computational resources.

S44

Figure S16: Metrics for first round of optimization

a-f) Various metrics quantified from the results shown in Fig. S15. The key takeaway for the purposes of

optimization is g) that no pair of parameters results in the experimental observation of a 50% track depth

and 𝐹𝐻𝑃𝐷𝑀 = 150𝑝𝑁 (or even 𝐹𝐻𝑃𝐷𝑀 > 10𝑝𝑁).

Unfortunately, no condition produced a depletion track depth below 100% and 𝐹𝐻𝑃𝐷𝑀 > 10𝑝𝑁 (Fig.

S16g). This finding contrasts starkly with experimental observations, wherein the track depth is ~50% and

𝐹𝐻𝑃𝐷𝑀 ≈ 150𝑝𝑁. Instead, conditions that produced a depletion track depth of between 10% and 90%

resulted in low force magnitudes that would not be capable of rupturing even a single DNA-DNA duplex,

as previously observed in extensive and unambiguous detail3.

While the reason for this disparity from experimental observation is unclear, we think the primary cause

of this issue may be RoloSim’s failure to account for potential heterogeneity of the activation energy of

tether association; if strands have different levels of accessibility and/or nonspecific association with their

underlying surfaces, then different strands could have different hybridization rates. We believe that a

method that allows for heterogeneity in association activation energy could allow for simulated HPDMs

S45

to achieve higher steady-state polyvalency (and thus higher 𝐹𝐻𝑃𝐷𝑀 measurements) while still producing a

track depth of ~50%. However, the exploration of such hypotheses will be the subject of future work.

Having failed to obtain a pair of 𝜅𝑡
∗ and 𝑘𝑜𝑛,0/𝑘𝑐𝑙𝑣𝑔 values that accurately reproduces all of our

experimentally-observed metrics simultaneously, we sought to obtain a reasonable set of parameters that

could be used for this initial study. Specifically, we relaxed our constraint on track dimensions and sought

a condition in which 𝐹𝐻𝑃𝐷𝑀 ≈ 150𝑝𝑁 and 𝐿𝑝 > 1𝜇𝑚. We started by increasing 𝜅𝑐 and 𝜅𝑡 ten-fold, with

the reasoning that increasing tether stiffness would result in increased force generation. (Ideally, future

versions of RoloSim will include more rigorous parameterization). We then varied 𝑘𝑜𝑛,0/𝑘𝑐𝑙𝑣𝑔 across two

order of magnitudes, as before. We ran seven independent simulations for each of seventeen 𝑘𝑜𝑛,0/𝑘𝑐𝑙𝑣𝑔

values ranging from 0.0001 to 0.01 and quantified 𝐿𝑡𝑟𝑎𝑗 and 𝐹𝐻𝑃𝐷𝑀 for each (Fig. S17). We found that

𝐿𝑡𝑟𝑎𝑗 > 2𝜇𝑚 at all conditions (Fig. S17d). At no condition was 𝐹𝑊𝐻𝑀 ≤ 380𝑛𝑚 (this may potentially

be an artifact of the automated track analysis method, which down not always result in linescans being

taken perpendicular to the depletion track, leading to over-estimation of 𝐹𝑊𝐻𝑀) (Fig. S17b). Across the

range of conditions tested, 𝐹𝐻𝑃𝐷𝑀 increased from ~10 pN to ~300 pN (Fig. S17e). Similarly, track depth

increased from ~10% to 100% (Fig. S17c). Finally, at no condition was 𝑘𝑐𝑙𝑣𝑔 lower than the previously

measured 𝑘𝑐𝑎𝑡 = 0.4𝑠
−1 (Fig. S17e). This result likely stems from the same issues that require the 10-

fold scaling of 𝜅𝑡 and 𝜅𝑐 – which we hope to resolve with future iterations of RoloSim. Ultimately, we

chose the condition of 𝑘𝑜𝑛,0/𝑘𝑐𝑙𝑣𝑔 = 0.0042, which produced 𝐹𝐻𝑃𝐷𝑀 ≈ 170𝑝𝑁 and 𝐿𝑡𝑟𝑎𝑗 ≈ 7𝜇𝑚.

Temporal scaling to obtain 𝑣𝑎𝑣𝑔 = 1.3𝜇𝑚/𝑚𝑖𝑛 resulted in. 𝑘𝑜𝑛,0 = .0091𝑠
−1 and 𝑘𝑐𝑙𝑣𝑔 = 2.2𝑠

−1.

S46

Figure S17: RoloSim optimization results, round 2

a) Montage of depletion tracks depicting results of seven simulations at each of seventeen 𝑘𝑜𝑛,0/𝑘𝑐𝑙𝑣𝑔

values. Image brightness is scaled to 0% to 100% RNA fuel depletion. b-f) Median +/- inter-quartile

range of several quantifiable metrics shown as a function of 𝑘𝑜𝑛,0/𝑘𝑐𝑙𝑣𝑔. The horizontal dotted line

denotes experimental observation, while the vertical dashed line denotes the selected condition.

S47

Supplemental Note 5: Estimating HPDM translocation dynamics following the

formation of a single tether

To determine whether microparticle position and orientation could be expected to equilibrate between

timesteps (30 ms), we calculated HPDM relaxation dynamics on sub-timestep timescales. We used the

kinematic equation for a sphere experiencing force applied by a newly-formed tether (𝐹𝑙𝑎𝑡𝑒𝑟𝑎𝑙) and the

force of drag from the surrounding fluid (𝐹𝑑𝑟𝑎𝑔) to calculate an HPDM’s theoretical lateral displacement

(𝑥𝑟𝑒𝑙𝑎𝑥) after tether formation:

�̈�𝑟𝑒𝑙𝑎𝑥 = 𝑚(𝐹𝑙𝑎𝑡𝑒𝑟𝑎𝑙 − 𝐹𝑑𝑟𝑎𝑔) (22)

where �̈�𝑟𝑒𝑙𝑎𝑥 is the acceleration of the HPDM and 𝑚 is the HPDM’s mass. In the absence of a nearby

surface, 𝐹𝑑𝑟𝑎𝑔 can be calculated for a sphere using Stoke’s law (i.e. 𝐹𝑑𝑟𝑎𝑔 = 6𝜋ηRẋ𝑟𝑒𝑙𝑎𝑥, where 𝜂 is the

dynamic viscosity - 0.001 Pa s for water – and ẋ𝑟𝑒𝑙𝑎𝑥 is the velocity). However, because the HPDM is

very close to a surface, Faxen’s law, a modification to Stoke’s law that accounts for the increased drag

experienced by a microsphere moving near a surface10, was used instead:

𝐹𝑑𝑟𝑎𝑔 =
6𝜋ηRẋ𝑟𝑒𝑙𝑎𝑥

1 −
9
16𝑞 +

1
8𝑞

3 −
45
256

𝑞4 −
1
16𝑞

5
(23)

where 𝑞 = 𝑅/𝑃𝑧. This modification results in a ~3x increase in 𝐹𝑑𝑟𝑎𝑔 relative to what would be calculated

using Stoke’s law. To reflect equilibration of the system as the HPDM approaches its new energetic

minimum, we approximated 𝐹𝑙𝑎𝑡𝑒𝑟𝑎𝑙 as decreasing linearly from the initial force-imbalance immediately

after tether formation (𝐹𝑙𝑎𝑡𝑒𝑟𝑎𝑙,0) to zero as 𝑥𝑟𝑒𝑙𝑎𝑥 approaches the maximum displacement (Δxrelax):

𝐹𝑙𝑎𝑡𝑒𝑟𝑎𝑙 = 𝐹𝑙𝑎𝑡𝑒𝑟𝑎𝑙,0 (1 −
𝑥𝑟𝑒𝑙𝑎𝑥
Δ𝑥𝑟𝑒𝑙𝑎𝑥

) (24)

We next parameterized this model using estimates from a representative RoloSim simulation with default

parameter settings. The lateral component of the tensile force on a tether immediately after association

(𝐹𝑙𝑎𝑡𝑒𝑟𝑎𝑙,0) was, on average, 1.56 pN (the 5th and 95th percentiles were 0.11 pN and 8.58 pN, respectively).

The median lateral HPDM displacement after each timestep (Δ𝑥𝑟𝑒𝑙𝑎𝑥) was 1.50 nm (5th and 95th

percentiles: 0.27 nm and 4.97 nm). The median distance between the bottom of the HPDM (e.g. 𝑃𝑧 − 𝑅)

and the surface was 7.20 nm (5th and 95th percentiles: 6.02 nm and 8.29 nm). We next used all 27

combinations these median and outer percentile estimates to calculate relaxation dynamics. Specifically

We used numerical integration to calculate 𝑥𝑟𝑒𝑙𝑎𝑥 vs time via Euler’s method with a timestep of 10-7 s

from 0 s to 0.03 s (the duration of one RoloSim timestep). For each timecourse, we calculated the

equilibration time as the time taken for the HPDM to move 90% of the total distance (e.g. the time when

𝑥𝑟𝑒𝑙𝑎𝑥 Δ𝑥𝑟𝑒𝑙𝑎𝑥⁄ = 0.90). We also calculated the Reynold’s number at all timepoints (𝑅𝑒 = 2𝑅ẋ𝑟𝑒𝑙𝑎𝑥𝜌/𝜂

where 𝜌 = 1,000𝑘𝑔/𝑚3 is the density of water) to ensure that fluid flow was laminar, a condition –

which is only satisfied at 𝑅𝑒 < 10 – that must be met for Faxen’s law to be accurate.

Note that the equation for Faxen’s law only applied to motion parallel to the surface; motion

perpendicular to the surfaces, which experiences a much greater drag force, was not considered here

because changes in 𝑃𝑧 were very small between timesteps (median: 0.030 nm, 5th and 95th percentiles:

0.002 and 0.113 nm).

S48

Our results (Fig. S18) revealed that, under all conditions tested, the particle’s position equilibrated well

before the 30 ms timestep length; the equilibration time ranged from ~0.009 ms to 15 ms, with the

average of the 27 simulations being 2.4 ms. 𝑅𝑒 never surpassed 3 × 10−4 for any condition. The slowest

relaxations occurred at the lowest 𝑃𝑧 and the highest 𝐹𝑙𝑎𝑡𝑒𝑟𝑎𝑙. Similar relaxation dynamics could be

expected for HPDM rotation. These results suggest that our approach, wherein the position and

orientation of the HPDM is set to the energetic optimum at each timestep, is satisfactory because the

actual relaxation dynamics should occur on a much faster timescale than the RoloSim timestep.

Figure S18: Relaxation dynamics calculations

Plots show the velocity (ẋ𝑟𝑒𝑙𝑎𝑥), Reynold’s number (𝑅𝑒), and displacement (𝑥𝑟𝑒𝑙𝑎𝑥) as a function of time

(note the logarithmic-scale axes) at various 𝑃𝑧 − 𝑅, Δ𝑥𝑟𝑒𝑙𝑎𝑥, and 𝐹𝑙𝑎𝑡𝑒𝑟𝑎𝑙,0 combinations as denoted via

the legend and labels on the top and right side of the figure.

S49

Supplemental Note 6: Assessing the accuracy of the energetic minimum

approximation

To assess the potential effect of thermal fluctuations on HPDM position and orientation, we performed

simulations of an HPDM undergoing thermal fluctuations according to the Metropolis-Hastings method.

To accomplish this, we carried out the following algorithm:

1. Restart a completed RoloSim simulation at a random timepoint, with some exceptions as

described in the section on 𝐹𝐻𝑃𝐷𝑀 measurement (e.g., timepoints at the beginning of the

simulation or during periods of depletion track-entrapment were excluded).

2. Select a random subset of a pre-defined number of tethers (i.e. a pre-defined polyvalency).

3. Calculate the energy of the system (composed of the HPDM body and the selected subset of

tethers) at the current HPDM position and orientation using equation 2 from the main text.

4. Generate a random rigid-body transformation of the HPDM. Specifically, normally distributed

random values of x-, y-, and z-displacements and rotation vector components 𝜌𝑥, 𝜌𝑦, and 𝜌𝑧 were

generated. The six random numbers were scaled such that they would have standard deviations of

1 nm, 1 nm, 0.1 nm, 1/R, 1/R, and 1/R respectively.

5. Calculate the energy of the system after application of the randomly-generated transformation in

step 4.

6. Apply the transformation if one of the following two conditions is met: 1) If the change in energy

following the transformation (Δ𝐸) is negative, or 2) if exp(−Δ𝐸) < 𝑟𝑎𝑛𝑑, where 𝑟𝑎𝑛𝑑 is a

randomly generated number uniformly distributed on the interval 0 to 1.

7. Repeat steps 3-6 for a total of 105 iterations.

In this manner, thermal fluctuations of the HPDM body were simulated (Fig. S19a-d). This entire

algorithm was repeated seven times each for polyvalency values ranging from 1 to 100. The energetic

optimum for one iteration was calculated as the position and orientation that resulted in the lowest energy

conformation (Fig. S19e). The deviation of the HPDM was calculated as the distance between the

HPDM’s center of mass at each timepoint and the HPDM’s center of mass at the energetic optimum (Fig.

S19f). The positions of the strand’s anchor points for each tether were also used to calculate sample 𝑘𝑜𝑛

values at each iteration. Two sample 𝑘𝑜𝑛 plots – one for a pair of strands that is well within interaction

range, and one for a pair that is just on the outer cusp of interaction range – are shown in Fig. S19g and h

respectively. The 𝑘𝑜𝑛 value at the energetic optimum (𝑘𝑜𝑛,𝑜𝑝𝑡, black lines in Fig. S19g-h) was generally

very similar to the average 𝑘𝑜𝑛 value from across the entire iteration (⟨𝑘𝑜𝑛⟩ green dashed lines in Fig.

S19g-h). This is exemplified by the ratio of the two metrics being clustered tightly on 1 (Fig. S19i).

However, when the inter-strand distance at the genetic optimum (𝑟𝑜𝑝𝑡) is above a certain cutoff, the ratio

diverges above one and becomes systematically biased (Fig. S19i). We ascribe this phenomenon to an

increasing role of nonlinearities in the 𝑘𝑜𝑛 vs. 𝑟 curve at large 𝑟. Notably, the role of Brownian

fluctuations decreases with increasing polyvalency, as can be viewed by an average deviation that

decreases in a manner that is proportional to the inverse square-root of the polyvalency (Fig. S19j).

Accordingly, the cutoff 𝑟𝑜𝑝𝑡 value increases with the polyvalency (Fig. S19k). The fraction of total

association events in a RoloSim simulation that falls below this cutoff thus decreases with increasing

polyvalency (Fig. S19l).

At a modest polyvalency of 20, only 5% of association events lie above this cutoff, while a polyvalency

of 40 brings that measure down to 1% (Fig. S19l). Typical RoloSim simulations occur with polyvalencies

S50

in the range of ~80+, where this fraction is below 0.01%. Accordingly, only a very small fraction of

association events have their on-rates affected by ignoring thermal fluctuations. We thus conclude that

ignoring thermal fluctuations is a reasonable approximation with minimal effect on the prediction of

HPDM dynamics.

Figure S19: Consideration of thermal fluctuations with Metropolis-Hastings dynamics

a-h) Metrics from a representative Metropolis-Hastings simulation of thermal fluctuations with a

polyvalency of 80 tethers. “Euler angle1” in d is the first of the three rotation angles from the Z-Y-Z

Euler set used to store HPDM orientation information. The red circle in e denotes the energetic optimum.

The solid black and dashed green lines in g and h represent ⟨𝑘𝑜𝑛⟩ and 𝑘𝑜𝑛,𝑜𝑝𝑡, respectively. i) The ratio

𝑘𝑜𝑛,𝑜𝑝𝑡/⟨𝑘𝑜𝑛⟩from DNA-RNA pairs in the simulation shown in a-h. The cutoff was calculated as the

highest 𝑟𝑜𝑝𝑡 value that exhibited a ratio below 1, averaged across the seven iterations of the thermal

fluctuation simulations. j-l metrics averaged across the seven iterations of the thermal fluctuation

simulations for each polyvalency (blue). The orange curve in j shows a single-parameter fit to a

1/sqrt(polyvalency) relationship. The y-axis value in l was calculated by counting the number of

association events that occurred with 𝑟 greater than the cutoff (which is depicted in k) in the original

RoloSim simulation that all iterations of the thermal fluctuation simulations were restarted from.

S51

Supplemental Note 7: Calculation of HPDM contact zone width

The width of the HPDM contact zone, 𝑤𝑐𝑜𝑛𝑡𝑎𝑐𝑡 was calculated as the maximum width of the contact

zone. The contact zone is defined as the full area, on the RNA fuel surface, within which the closest point

of the HPDM is within a distance such that 𝑘𝑜𝑛 ≥ 𝑘𝑜𝑛,0/10. In other words, all RNA fuel strands outside

of the contact zone will, by definition, have an association rate ≤ 𝑘𝑜𝑛,0/10. This cutoff distance, 𝑟𝑐𝑜𝑛𝑡𝑎𝑐𝑡

can be calculated from equations (20) and (21)

10 = exp(
−𝜅𝑡

∗ exp(Κ∗𝑟𝑐𝑜𝑛𝑡𝑎𝑐𝑡
2)

𝑘𝐵𝑇
) (25)

Which re-arranges to

𝑟𝑐𝑜𝑛𝑡𝑎𝑐𝑡 =
√
log (

− log(10) 𝑘𝐵𝑇
𝜅𝑡
∗)

Κ∗
(26)

Once 𝑟𝑐𝑜𝑛𝑡𝑎𝑐𝑡 is calculated, 𝑤𝑐𝑜𝑛𝑡𝑎𝑐𝑡 for spherical HPDMs can be calculated using an adaptation of a

previously-derived1 equation:

𝑤𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 𝐷𝐻𝑃𝐷𝑀 sin (cos
−1 (1 −

𝑟𝑐𝑜𝑛𝑡𝑎𝑐𝑡2

𝐷𝐻𝑃𝐷𝑀
)) (27).

For rod-shaped HPDMs, 𝑤𝑐𝑜𝑛𝑡𝑎𝑐𝑡 is calculated with a similar equation that accounts for the

discorectangular shape of the contact area:

𝑤𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 𝐷𝑟𝑜𝑑 sin (cos
−1 (1 −

𝑟𝑐𝑜𝑛𝑡𝑎𝑐𝑡2

𝐷𝐻𝑃𝐷𝑀
)) + 𝐿𝑟𝑜𝑑 (28).

S52

References

1 Yehl, K. et al. High-speed DNA-based rolling motors powered by RNase H. Nat. Nanotechnol.

11, 184, doi:10.1038/nnano.2015.259 (2015).

2 Vale, R. D. The Molecular Motor Toolbox for Intracellular Transport. Cell 112, 467-480,

doi:10.1016/S0092-8674(03)00111-9 (2003).

3 Blanchard, A. T. et al. Highly polyvalent DNA motors generate 100+ piconewtons of force via

autochemophoresis. Nano Lett., doi:10.1021/acs.nanolett.9b02311 (2019).

4 Clack, N. G., Salaita, K. & Groves, J. T. Electrostatic readout of DNA microarrays with charged

microspheres. Nat. Biotechnol. 26, 825-830, doi:10.1038/nbt1416 (2008).

5 Petrosyan, R. Improved approximations for some polymer extension models. Rheol. Acta 56, 21-

26, doi:10.1007/s00397-016-0977-9 (2017).

6 Whitley, K. D., Comstock, M. J. & Chemla, Y. R. Elasticity of the transition state for

oligonucleotide hybridization. Nucleic Acids Res. 45, 547-555, doi:10.1093/nar/gkw1173 (2017).

7 Becker, N. B., Rosa, A. & Everaers, R. The radial distribution function of worm-like chains. The

European Physical Journal E 32, 53-69, doi:10.1140/epje/i2010-10596-0 (2010).

8 Bazrafshan, A. et al. Tunable DNA Origami Motors Translocate Ballistically Over μm Distances

at nm/s Speeds. Angew. Chem. Int. Ed. 59, 9514-9521, doi:10.1002/anie.201916281 (2020).

9 Nitta, T. & Hess, H. Effect of Path Persistence Length of Molecular Shuttles on Two-stage

Analyte Capture in Biosensors. Cell. Mol. Bioeng. 6, 109-115, doi:10.1007/s12195-012-0262-7

(2013).

10 Schäffer, E., Nørrelykke, S. F. & Howard, J. Surface Forces and Drag Coefficients of

Microspheres near a Plane Surface Measured with Optical Tweezers. Langmuir 23, 3654-3665,

doi:10.1021/la0622368 (2007).

