Massively parallelized molecular force manipulation with on demand thermal and optical control

Hanquan Su^{1,4} Joshua M. Brockman^{2,4} Yuxin Duan^{1,4} Navoneel Sen³ Hemani Chhabra³ Alisina Bazrafshan¹ Aaron T. Blanchard² Travis Meyer² Brooke Andrews¹ Jonathan P.K. Doye³ Yonggang Ke^{1,2} R. Brian Dyer¹ Khalid Salaita^{1,2,*}

¹Department of Chemistry, Emory University, Atlanta, Georgia, 30322, United States. ²Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30322, United States. ³Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom. ⁴These authors contributed equally to this work.

*Correspondence should be addressed to K.S. (k.salaita@emory.edu)

This PDF file includes:

Materials and Methods Note S1-S3 Figure S1-S13 Table S1-S6

Materials and Methods

Reagents

All reagents were purchased from Sigma-Aldrich (St. Louis, MO) and were used as received, unless otherwise stated. N,N'-methylenebisacrylamide was purchased from Alfa Aesar (Haverhill, MA). Cy3B-NHS ester was purchased from GE healthcare Bio-Science (Pittsburgh, PA). Trishydroxypropyltriazolylmethylamine (THPTA) was purchased from Click Chemistry Tools (Scottsdale, AZ 85260). DMSO (99.5%) and sodium bicarbonate (99.0%) were acquired from EMD chemicals (Philadelphia, PA). P4-gel size exclusion beads were acquired from Biorad (Hercules, CA). Gold nanorods (AuNRs) were synthesized in-house and characterized by TEM. Based on TEM analysis, the mean diameter of AuNRs was 25 × 100 nm. Milli-Q water was obtained from a Nanopure system with 18.2 M⁻¹-cm resistivity. All oligonucleotides were purchased from Integrated DNA Technologies (Coralville, IA) and were purified either by reverse-phase HPLC or standard desalting.

Synthesis of origami-polymer force clamp

First, cetyltrimethylammonium bromide (CTAB) stabilized AuNRs (size = 25 x 100 nm) were synthesized according to the protocol reported by Murray and colleagues¹. After synthesis, the reaction mixture (~ 200 ml) was centrifuged at 5000 rpm for 60 min and the supernatant was discarded. The AuNRs were resuspended in 90 ml of DI water (concentration = ~1 nM). CTAB was exchanged with N, N'-bis(acryloyl)cystamine (20 mg dissolved in 10 ml ethanol) by vigorous stirring (700 rpm) for 12 h. Next, 15 ml Milli-Q water was heated to 70 °C with N₂ purging in a three-neck flask. Next, 0.1 g of N-isopropylmethacrylamide and 0.01 g of the crosslinking agent N,N'-methylenebisacrylamide were dissolved in 15 ml Milli-Q water with vigorous stirring and continuously purged with N₂ flow. Next, 7 ml of the AuNR solution (described above, ~ 1 nM) were centrifuged at 6500 rpm for 10 min, the supernatant was removed and AuNRs were dispersed in 1 ml Milli-Q water and added to the reaction flask. Within 2 min, polymerization was initiated with the addition of 80 ul of 0.1 M of the free radical initiator, 2,2'azobis(2methylpropionamidine) dihydrochloride (AAPH). The reaction proceeded for 2 h and the alkyne functional group was introduced via dropwise injection of 0.01 ml of propargyl methacrylate monomer (80 µmol). After 1 h, the reaction was stopped, and the turbid pNIPMAm particle solution was cooled to room-temperature. The product was centrifuged and dispersed in Milli-Q water. This was repeated at least three times to ensure sufficient removal of unreacted monomer. The core-shell structure and mono-dispersity of pNIPMAm particles were verified by TEM and dynamic light scattering (DLS) analysis, respectively. The particle concentration was calculated using Beer Lambert law. As reported by Christopher J. Orendorff and Catherine J. Murphy², the extinction coefficient of gold nanorods (42 x 12.3 nm, $\lambda = 785$ nm) $\epsilon_{785 \text{ nm}} = 4.6 \text{ x} 10^9 \text{ M}^{-1} \text{cm}^{-1}$. Because the size of AuNR in this work is ~ twice that of the reported values in all dimensions (L x W x H), we approximated the extinction coefficient of 25 x 100 nm AuNR to be $\varepsilon_{785 \text{ nm}} = 2^3 \text{ x}$ $4.6 \times 10^9 \text{ M}^{-1} \text{cm}^{-1} = 3.7 \times 10^{10} \text{ M}^{-1} \text{cm}^{-1}$.

The pNIPMAm particles were then decorated with single-stranded DNA (ssDNA) to facilitate the particle-DNA origami assembly. Briefly, 25μl of pNIPMAm particles (~1.25nM) and 25μl of ssDNA (*b**, 100μM) was mixed in a 1.5ml Eppendorf tube. Then, in a separate tube, 5μl of CuSO4 (20mM) was added to 10μl of THPTA (50mM) solution to form a blue-colored Cu-THPTA complex (ligand to copper ratio is 5:1). Finally, 5μl of Cu-THPTA complex was reduced by adding 5μl of 100mM freshly prepared sodium ascorbate solution (blue color to clear) and the mixture was added to the first tube containing pNIPMAm particle and ssDNA. Note that the Cu-THPTA

needs to be reduced by sodium ascorbate before mixing with particle and ssDNA. The reaction was left at RT for 1 hour and washed 5 times by centrifugation at 5000 rpm for 6 mins.

The origami template was assembled from single-stranded scaffold p7560, which was prepared from M13 phage using a previously reported method ³⁻⁴. A 16-helix bundle (16HB) rod was designed in caDNAno, based on a 4 x 4 square lattice cross-section. To synthesize 16HB structure and incorporate DNA hairpin to 16HB, a 10-fold excess of staple strands (100 nM) and 15-fold excess of DNA hairpins (150nM) were mixed with p7560 scaffold strand (10 nM) in folding buffer (5 mM Tris, 1 mM EDTA, 10 mM MgCl₂ with a total volume of 50 μL. The mixture was denatured at 85°C for 10 min, followed by a slow anneal from 60 °C to 25 °C over 18 hrs (-2°C/hr). 16HB were purified from excess staples using agarose gel electrophoresis (0.67%) in 0.5X TBE+Mg buffer (45 mM Tris, 45 mM Boric acid, 1 mM EDTA, 10 mM MgCl₂). PEG precipitation was used to purify 16HB from excess staples in large scale synthesis (30nM). Briefly, the 16HB solution was mixed with precipitation buffer (15% PEG8000, 1x TE, 505mM NaCl, 10mM MgCl₂) at a 1:1 ratio. Samples were centrifuged at ~16,000g for 25 minutes at 4 °C (there should be a pellet after centrifugation). Then the supernatant was removed, and DNA origami was resuspended with folding buffer. 16HB structures were characterized by agarose gel electrophoresis (1.5%) and negative stain TEM imaging (1% uranyl formate).

Assembly of origami-polymer force clamp

15 μ l of pNIPMAm particles (~0.3 nM) were mixed with 50 μ l of 16HB origami beams (~30 nM). The mixture was incubated overnight at room temperature. The solution was then centrifuged at least 5 times at 5000 rpm for 6 mins. Finally, the sample was re-dispersed in ~ 40 μ l buffer B (5 mM Tris-HCl, 10 mM MgCl₂ and 1 mM EDTA at pH = 8). This translates to ~10⁹ OPFCs (0.3 nM * 15 μ l * N_A), ~10¹¹ origami beams (~200 origami structures on each particle), and ~10¹² target molecules.

<u>Transmission electron microscopy (TEM)</u>

TEM measurements were acquired on a Hitachi H-7500 transmission electron microscope at an accelerating voltage of 80 kV in the Robert P. Apkarian Integrated Electron Microscopy Core at Emory University. A 5 μ l sample (AuNRs or OPFCs) was deposited onto a 200-mesh carbon coated copper grid (Electron Microscopy Sciences). After 60 sec of incubation, excess liquid was wicked away. This incubation step was repeated three times. OPFCs sample preparation, negative staining was used after the sample incubation step described above. The specimens were stained by adding 5 μ l of 1% uranyl formate solution onto the TEM grid. After 60 sec incubation, the excess liquid was wicked away. The sample grids were subsequently dried and stored in a desiccator.

DNA labeling

A mixture of oligonucleotide (0.01 ml, 10 nmol) and excess Cy3B-NHS ester (0.05 mg dissolved in 0.01 ml DMSO) in 0.1 M sodium bicarbonate solution (0.08 ml) was reacted at room-temperature for 12 h. The product was subjected to P4-gel filtration to desalt and to remove salts and unreacted dye. Reverse phase HPLC (solvent A: 0.1 M TEAA, solvent B: 100% MeCN; initial condition was 10% B with a gradient of 1 %/min, flow rate: 1 ml/min) was applied to further purify the product. Reaction products were purified using a L10NM8 column (diameter: 4.6 mm; length: 250 mm) in a reverse phase binary pump HPLC that was coupled to a diode array detector (Agilent 1100).

Equilibrium fluorescence measurements

Fluorescence spectra of Cy3B labeled DNA hairpin were obtained on the Dual-Fl Fluorometer (Horiba Scientific, Edison, New Jersey) with a 520 nm excitation. The samples were prepared at a concentration of 150 nM. Temperature dependent spectra were obtained from 20 °C to 90 °C in increments of 2.5 °C using a peltier temperature controller. The solution temperature was held for 2 mins before collecting steady-state fluorescence spectra of the hairpins at each temperature. The Cy3B fluorescence emission peak was acquired at 575 nm. Integration time = 5 sec, detector accumulation = 3.

<u>Time-resolved T-jump fluorescence spectroscopy</u>

Temperature-jump fluorescence relaxation experiments were performed on a custom-built instrument as previously described (25, 51). Briefly, a Q-switched Ho:YAG laser (AQS-Ho-YAG, IPG Phototonics Corp., Oxford, MA) was used to generate a temperature jump of approximately 8-10°C. Temperature jumps are generated from the H₂O absorbance bands in the far IR. Fluorescence emission was probed using ~490 nm excitation generated by frequency-doubled Ti:Sapphire (980 nm) pumped by a Chameleon laser (Coherent, Santa Clara, CA). Sample emission fluorescence was collected at ~90° to the CaF₂ chamber and focused through a bandpass filter (514 nm-570 nm). The emission was measured using a Hamamatsu R7518 photomultiplier tube (Hamamatsu Photonics K. K., Hamamatsu, Japan). The signal was digitized and averaged (3000 shots) by a using a Wavesurfer 62Xs-B oscilloscope (Teledyne LeCroy, Chestnut Ridge, NY).

Data acquisition

Temperature jump experiments were performed on the origami-polymer force clamp or the DNA hairpin samples in buffer B (5 mM Tris-HCl, 10 mM MgCl₂ and 1 mM EDTA) at pH = 8. This buffer has been reported for preserving the intact structure of DNA origami (52). Rhodamine B solution (150 nM) was used as a reference to determine the temperature jump. The temperature dependency of Rhodamine B fluorescence was calibrated on the temperature-jump setup with a 490 nm excitation. The temperature was adjusted via a water bath and held for 5 mins. Then, Rhodamine B fluorescence signal was recorded (using 3000 shots) and measured using the same instrumental setup and filters as those used for the T-jump and Force-jump measurements.

Note S1. Geometric analysis of DNA origami design parameters.

We used geometric calculations and chemo-mechanical modeling to assess the subset of the rod length and thickness parameter space that can conceivably result in particle collapse-drive tension probe opening. Specifically, we tested for length-thickness pairs that satisfied four conditions.

1. Two closed tension probes (positioned 15 nm from each end of the rod) need to be able to simultaneously bind to the relaxed particle. To test for this condition, we used the Petrosyan approximation of the worm-like-chain model 5 to calculate the closed tension probe's force-extension curve. We used this force-extension curve to find that $F = 4.7 \, pN$ (which is equal to the probe's $F_{1/2}$) when the closed tension probe's end-to-end extension is 17.3 nm. If the origami rod and the particle are treated as rigid and non-intersecting, then the length at which tethers can only

connect to the particle with a force $\geq 4.7 \, pN \, (L_{cutoff})$ can be calculated by re-arranging the equation:

$$17.3 \ nm = \sqrt{(250 \ nm)^2 + \left(\frac{L_{max}}{2} - (15 \ nm)\right)^2} - (250 \ nm) \tag{1}$$

where 250 nm is the particle's radius. This yielded $L_{max}=219\ nm$. This condition is satisfied only when $L \leq L_{max}$. This result would change with the particle's diameter or the length of the closed tension probe.

- 2. Closed tension probes need to be opened by particle collapse. To test for this condition, we tested all length-thickness pairs where the above condition was satisfied. Then, we checked to make sure that particle collapse (which results in a decrease of particle radius from 250 nm to 125 nm) could transfer the tension probe from a closed state (tether extension < 17.3 nm) to an opened state (tether extension > 17.3 nm). We found that when $L \le 65 \ nm$, particle collapse never caused tension probes to transition from a closed state to an open state. The regions of the length-thickness parameter space that fail to meet this or the previous condition are shown in green below.
- 3. Particle collapse should not result in "buckling" of the DNA origami rod. To test for this condition, we measured the critical buckling force (F_c) using an equation presented by Liedl et. al

$$F_c = \pi^2 P k_B T / L^2 \tag{2}$$

 $F_c = \pi^2 P k_B T / L^2 \qquad (2)$ where P is the persistence length of the bundle and $k_B T = 4.114 \ pN \ nm$ is the Boltzmann's constant at room temperature. Based on a previous model presented by Castro et. al 8, we estimate P as $P = (53 nm)(N_{duplex})^{1.94}$ where N_{duplex} is the number of duplexes in the bundle. The region of the length-thickness parameter space that fails to meet this condition (e.g. $F_c \le 4.7 \ pN$) is shown in red below.

The above analysis also does not take into account that what's important for the bending of the origami is not simply the force being applied by a single hairpin, but the effective net force due to all the hairpins and linkers.

4. The rod should have dimensions that are appropriate for self-assembly. To test for this condition, we checked if the number of nucleotides in the rod, which we estimated as $LN_{dunlex}/(0.34 nm)$, was lower than 7,560 nt (the length of the scaffold used in this work). The region of the lengththickness parameter space that fails to meet this condition (e.g. $F_c \le 4.7 \ pN$) is shown with grey stripes above

We found that our selected condition ($N_{duplex} = 16$ and L = 130 nm), denoted with a black dot in the figure below, satisfied all four of this conditions.

For the subset of the parameter space in which all four conditions were satisfied, we also estimated the fraction of tension probes that would be opened by particle collapse. To do this, we used Boltzmann distribution calculations to estimate the distribution of particle attachment points and then used the calculated Boltzmann distribution to estimate the percentage of tension probes that transition from a closed state to an opened state following particle collapse. We found that the percentage increased from ~0% to ~100% from $L \approx 65 \, nm$ to $L \approx 125 \, nm$, as shown via color within the figure below. These calculations were performed by assuming that the particle acts as a rigid sphere that decreases in size during collapse and that the rod is rigid as well. In reality, both structures likely undergo relaxation in response to force transmitted through the tension probes that will reduce the force experienced by the tension probes (and, by extension, reduce the fraction of tension probes that are opened by collapse). The OxDNA calculations further elaborate on this point.

Note S2. Force calculation

Here, we considered the DNA hairpin as a classic two-state system, where a hairpin structure transformed between folded and unfolded state, unfolding rate constant k_u and k_f , respectively. Briefly, calculation of the force applied by OPFC can be described in the following steps:

1. Steady-state fluorescence measurement to determine the K_{eq}

The equilibrium reaction constant K_{eq} can be measured by a steady-state temperature dependent fluorescence measurement of the DNA hairpin structure or a molecular beacon structure which contain the identical region of DNA hairpin stem-loop. At each temperature, K_{eq} of DNA hairpin stem melting is expressed as equation below, where f is the fraction of hairpins in the open state: $K = \frac{[open]}{[closed]} = \frac{k_u(0 \ pN,T)}{k_f(0 \ pN,T)} = \frac{f}{1-f} \tag{3}$

$$K = \frac{|open|}{|closed|} = \frac{k_u(0 \ pN, T)}{k_f(0 \ pN, T)} = \frac{f}{1 - f}$$
(3)

2: Pump-probe temperature-jump measurement to determine the k_r (0 pN, T)

The T-jump is a relaxation method where a shift in temperature acts as a perturbation. A transient temperature pump is applied and shifts the equilibrium position of the system. Then, then the dynamic change of the system can be detected by a time-resolved probe beam. Specifically, in our pump-probe setup, the time-resolved fluorescence signal was collected by a PMT and fitted to a single-exponential function. From the fitting, the relaxation lifetime (which is equal to $1/k_r$) $\tau_r(0)$ pN, T) at each temperature was extracted. The relaxation rate following the perturbation ($k_r(0 \text{ pN})$, T)= $1/\tau_r(0 \text{ pN}, \text{T})$) is defined as the sum of the unfolding rate $k_u(0 \text{ pN}, \text{T})$ and the re-folding rate k_f (0 pN, T):

$$k_r(0 \text{ pN}, T) = 1/\tau_r(0 \text{ pN}, T) = k_u(0 \text{ pN}, T) + k_f(0 \text{ pN}, T)$$
 (4)

3:Calculation of $k_u(0 \text{ pN}, \text{ T})$ and $k_f(0 \text{ pN}, \text{ T})$

From steps 1&2, the $k_u(0 \text{ pN}, \text{T})$ and $k_f(0 \text{ pN}, \text{T})$ were calculated and expressed as:

$$k_u(0 \text{ pN, T}) = \frac{1}{\tau_r(0 \text{ pN,T})} \times \frac{K_{eq}}{1 + K_{eq}}$$
 (5)

$$k_f(0 \text{ pN, T}) = \frac{1}{\tau_r(0 \text{ pN, T})} \times \frac{1}{1 + K_{eq}}$$
 (6)

4. Calculation of rate constants $k_u(0 \text{ pN}, \text{T})$ and $k_f(0 \text{ pN}, \text{T})$ at low temperature ($T_{\text{final}} < 45^{\circ}\text{C}$)

Because the time-resolved T-jump with T_{final} < 45°C did not show significant fluorescence signal across the measured timescale, it is not possible to directly measure k_r or calculate the $k_u(0 \text{ pN}, \text{T})$ and k_f (0 pN, T) at these temperatures. In order to quantify the k_u and k_f , at these temperatures we constructed an Arrhenius plot with the unfolding rate k_u at high temperature ($T_{\text{final}} \ge 45$ °C) and extrapolated it to the low temperature regime ($T_{final} < 45^{\circ}C$) as shown in **Figure 3e.** The Arrhenius plot was fitted by a linear fitting function: $ln(k_u(0 \text{ pN}, \text{T})) = 100.07\text{-}30242.57*(1/\text{T})$. From the extrapolation, $\ln(k_u(0 \text{ pN}, 45^{\circ}\text{C})) = 5.017$ and $k_u(0 \text{ pN}, 45^{\circ}\text{C}) = 151 \text{ s}^{-1}$. To validate this fitting and the unfolding rate from the extrapolation, we compared the $k_{\nu}(0 \text{ pN})$ to the reported values at 23°C for similar structure from Woodside and colleagues 9 . Importantly, because the $k_u(0 \text{ pN})$ is temperature dependent, we further extrapolate the Arrhenius plot to 23°C and get $k_u(0 \text{ pN}, 23^{\circ}\text{C})$ $= \exp(-2.04) = 0.13 \text{ s}^{-1}$. This number agrees with the reported value $k_u(0 \text{ pN}, 23^{\circ}\text{C}) = \exp(-4.1) = 0.13 \text{ s}^{-1}$. 0.017 s⁻¹ from a similar DNA structure (10R50/T4) with 10-mer stem with 50% GC content and 4-nt loop (GAGTCTCCTA-TTTT-TAGGAGACTC). Note that the unfolding rate of our DNA structure is greater than the reported values for other stem loop hairpins. This is likely due to the low GC content (~22%) in our stem, different experimental conditions (200 mM monovalent salt in Woodside's paper and 5 mM Tris-HCl, 10 mM MgCl₂ and 1 mM EDTA in our work), and the shorter loop (7 in our work compared to 4 nt loop used by Woodside et al.). Accordingly, the folding rate k_f (0pN) at low temperature can be calculated using the K_{eq} from the steady-state measurement in step 1: $k_f(0 \text{ pN, T}) = \frac{K_{eq}}{k_{v}(0 \text{ pN, T})}$

5. Pump-probe force-jump measurement to determine the $k_r(F, T)$

Similar to the T-jump measurement for the DNA hairpin, the relaxation lifetime $\tau_r(F, T)$ was acquired from single exponential fitting of the time-resolved fluorescence signal. The relaxation rate under force $k_r(F, T)=1/\tau_r(F, T)$, is defined as the sum of the unfolding rate $k_u(F, T)$ and folding rate $k_f(F, T)$ with the application of force.

$$k_r(F, T) = 1/\tau_r(F, T) = k_u(F, T) + k_f(F, T)$$
 (7)

6. Estimation of the force

We next calculated the force using the Bell model which was first developed by G. Bell in 1978 10 . The Bell model predicts how forces modulate the kinetics of an idealized two-state system separated by a single barrier under constant force. In the Bell model, the force effectively modulates the k_u and k_f as follows 10 :

$$k_{u}(F,T) = k_{u}(0 pN,T) \times \exp\left(\frac{F\Delta x_{u}^{\ddagger}}{k_{B}T}\right)$$

$$k_{f}(F,T) = k_{f}(0 pN,T) \times \exp\left(\frac{-F\Delta x_{f}^{\ddagger}}{k_{B}T}\right)$$
(8)

$$k_f(F,T) = k_f(0 pN,T) \times \exp\left(\frac{-F\Delta x_f^{\dagger}}{k_B T}\right)$$
 (9)

 Δx_u^{\dagger} and Δx_f^{\dagger} are the distance to the transition state. Previously, Woodside's work reported experimental measurement and theoretical estimation of Δx_u^{\ddagger} of the similar DNA hairpin sequence $(\Delta x_u^{\ddagger} = 4.0 \text{ nm}, \Delta x_f^{\ddagger} = 5.1 \text{ nm}, 10R50/T4)^9.$

From step 5, the relaxation time of force-jump experiment can now be written as:

$$k_r(F,T) = \frac{1}{\tau_r(F,T)} = k_u(0 pN,T) \times \exp\left(\frac{F\Delta x_u^{\dagger}}{k_B T}\right) + k_f(0 pN,T) \times \exp\left(\frac{-F\Delta x_f^{\dagger}}{k_B T}\right)$$
(10)

Therefore, the only unknown variable, force (F) can be calculated. At 45°C, we calculated the effective force generated by the OPFC is 3.4 ± 0.45 pN from triplicate measurements of the Fjump and T-jump experiments (Figure S11&12).

Note S3. OxDNA simulation **OxDNA Model**

Note Figure S1: (a) A representation of a rigid oxDNA nucleotide. (b) A 12-base-pair DNA double helix as represented by oxDNA. The inset shows the different types of interactions that are accounted for in the oxDNA model, namely, hydrogen-bonding between complementary bases, (coaxial) stacking interactions between bases, cross-stacking interactions between diagonally-opposite bases in a double helix, and a FENE potential between backbone sites, as well as excluded-volume repulsions associated with the backbone and base sites.

OxDNA is a coarse-grained model simulation of DNA at the nucleotide level ¹¹⁻¹³. **Note** Figure S1 shows a double helix as represented by oxDNA with the interactions that contribute to the model illustrated. The parameters of the model have been fitted to reproduce the structure, thermodynamics and mechanics of double-stranded and single-stranded DNA with a particular focus on the thermodynamics of hybridization. We use the second-generation version of the oxDNA model (sometimes called "oxDNA2") introduced by Snodin et al. ¹³; this included changes

that improved the description of large DNA nanostructures such as origamis. OxDNA's excellent reproduction of the structure of DNA origamis has been further confirmed by a detailed comparison to a high-resolution origami structure obtained by cryoEM ¹⁴⁻¹⁵. Consequently, it has been widely used to model the structure of DNA origamis with much success. Particularly relevant to the current application is oxDNA's ability to describe the mechanical properties of origamis, because of the tensile forces applied by the linkers and hairpins to the origami force clamp. Importantly, it has been shown to provide a reasonable description of both the elastic moduli of DNA origamis ¹⁶ and the local unravelling of DNA origami through unbinding of staple domains due to applied tension ¹⁷. Note, that the tensile forces were found to be not sufficiently large to cause any staple unbinding in the case of the OPFC. Also important to the current application is oxDNA's ability to capture the effects of tension on small DNA motifs, such as hairpins and duplexes ¹⁸⁻¹⁹. This stems from its good description of the thermodynamics of hybridization and hairpin formation 11, the force-extension curves of single-stranded DNA 12 and the persistence length of double-stranded DNA ^{11, 13}. For all these reasons oxDNA is particularly well-suited to describe the OPFC. Similarly, it has also been used to calibrate the origami force sensor 20 of Nickels et al. 21.

System setup

Note Figure S2: Schematic to show how the parameters for modelling the polymer sphere in the oxDNA simulations are chosen (for clarity only two of the three hairpins on each side are shown). The relative sizes of the objects are not to scale.

In the oxDNA simulations we do not model the sphere explicitly, but instead model it effectively by a set of harmonic traps that constrain the positions of the end nucleotides that are attached to the polymer sphere. These traps lie on the surface of a sphere with a radius appropriate for the given temperature. **Note Figure S2** illustrates our approach for calculating the positions of the traps at low temperature. First, we calculate the centers of mass of the origami (COM_0), its top layer (COM_1) and its two top-most layers (COM_{12}). From the center of the top layer, we then added a vector of magnitude ($d + r_{sphere}$) in the direction given by the vector $V_1 = COM_{12} - COM_0$ to get the center of the sphere (A). We assume that the hairpins/linkers are attached to the closest point on the polymer sphere. The details are as follows. For each linker/hairpin, we define their point of attachment (B_i) to the origami based on an equilibrated origami configuration; we then

define the vector $\mathbf{V_2} = \mathbf{B_i} - \mathbf{A}$ for each linker/hairpin. In the direction of $\mathbf{V_2}$ we add a vector of magnitude r_{sphere} to \mathbf{A} to get $\mathbf{C_i}$ the trap center for that particular linker/hairpin that represents its attachment to the sphere. To calculate the trap positions for the sphere $\mathbf{C_i}$ at high temperature, we assumed that the sphere underwent a uniform contraction, keeping the angle (θ_i) the same but decreasing r_{sphere} from 280 nm at 313 K to 205 nm at 328 K. After all the trap centers are calculated for the linkers and hairpins, the origami is simulated at 313 K and 328 K until the hairpins have reached the required distance from the center of the sphere and the forces have equilibrated.

Simulation details

L_{110nm} is our initial model system, with the six hairpins located at the two extremes of the origami in groups of 3. To investigate the effect of the position of the hairpins on the origami on the force exerted by the sphere, we simulated five more systems (L_{90nm} - L_{10nm}) where the hairpins were progressively moved to the center of the origami. L_{10nm} had all the hairpins concentrated at the center of the origami. The $\Delta 32$ system had the hairpins in the same position as L_{110nm} but lacked multiple staple strands at the center of the origami. The absence of staple strands makes $\Delta 32$ much more flexible than the other origamis. We assume the sphere to have a radius of 280 nm at 313 K and 205 nm at 328 K. We perform MD simulations to simulate each system at 313 K and 328 K in the canonical NVT ensemble²²; we will refer to these as the low and high temperature states. The coupling between the system and a heat bath is emulated by employing an Andersenlike thermostat ²³. We chose harmonic traps with a force constant of 28.545 pN/nm to model the effect of the sphere and run our simulations until the forces have equilibrated. The only difference between the high and the low temperature states is the radius of the polymer sphere. At low temperature, the trap positions on the sphere are closer to the respective hairpins and linkers, and consequently the force felt is low. At high temperature, the sphere shrinks, and the trap positions all move towards the center of the sphere thereby increasing the distance between them and the hairpins and linkers which results in larger forces. The forces experienced by the origami at high temperature has a compressive component as well as a lateral bending component because of the sphere shrinkage. We also perform simulations at high temperature with "mutual traps" between the nucleotides in the hairpin so that the hairpins are prevented from unfolding, thus allowing us to obtain the forces experienced in the absence of any hairpin unravelling.

Assumptions

There are a number of assumptions in the setup of the simulations of which it is important to be aware. First, we assume that when the hairpins and linkers attach to the polymer sphere (in the low temperature regime for the sphere size) they attach to the closest point on the polymer spheres, which we assume are perfectly smooth. In practice, although this is a reasonable assumption for the average position of the attachment points across the ensemble of origamis, we expect there to be a distribution of such points across the ensemble of origamis. We do not account for this potential heterogeneity in population of the OPFCs. Second, we do not explicitly account for the elastic mechanical properties of the sphere. For example, the spring constant for our harmonic traps is in the "stiff-sphere" limit where the obtained forces do not depend on the spring constant because the origami is more compliant than the traps. Third, we assume that all the hairpins and linkers are simultaneously attached to the sphere. The parallel application of the forces through all these linkers and hairpins is the reason for the significant bending of the origami. If not all linkers/harpins are bound, then the total applied force on the origami is likely to be less and the

origami less bent, which in turn is likely to lead to higher forces through the hairpins/linkers that are attached.

We also note that upon close inspection that the 16HB origami has an inherent twist of around -80° between the two ends. Such twist is expected for an origami based on a square lattice of helices without insertions or deletions ²⁴. However, this twist is too low to have significantly affect the geometric assumptions of the design.

Further results.

System	T = 313 K	T = 328 K
$L_{10\mathrm{nm}}$		A CLIANA
L _{30nm}	ALL KNOWN	at contraction
L _{50nm}	- William William	TENTA .
L _{70nm}	4 Kbun Mar	J. Million St. Co.
L _{90nm}	The state of the s	A Section of the sect
L _{110nm}	All Marie Marie	A CONTRACT OF THE PARTY OF THE
$L_{110\text{nm}}(\Delta 32)$	A CONTRACTOR OF THE PARTY OF TH	Service Servic

Note Figure S3: Snapshots of C1-C6 and Δ 32 at low and high temperatures. At high temperature, a strong bend is visible in all C1-C6 while Δ 32 is kinked.

Configurations for each of the origami force clamps are illustrated in **Note Figure S3** at both low and high temperature. The combined effect of the forces on the hairpins and linkers causes the origami to bend significantly. Although, the force acting through each individual hairpin/linker is not particularly high, the sum of all such forces is substantial. At low temperature, we note that all the hairpins and linkers are roughly oriented radially towards the center of the sphere, meaning they are co-linear with the radius vector at that point on the sphere. We note from the average forces that as the sphere shrinks, the hairpins and linkers in the center of the origami tend to be in a state of compression rather than tension because of their proximity to the surface of the sphere. At high temperature, the origami bends more as a result of the higher average force exerted on the system. The average bending is more for L_{10nm} than L_{130nm} because of the tension in the outer linkers in L_{10nm} whereas in L_{130nm} , the hairpins can also absorb the stress by unfolding. The deletion of 16 staple strands in $\Delta 32$ gives the origami significantly more flexibility and therefore it bends more at high temperature. We observe that the average angle of bending between the two origami blocks either side of the flexible section is significantly larger at 328 K (42.616°) compared to at 313 K (13.066°) because the origami has deformed to absorb much of the strain due to the particle collapse, thereby making hairpin unfolding much less likely (**Table S1**).

Table S1: Average angle of origami bending and standard error along hairpins.

Configuration	Angle of bending at 313 K (°)	SEM (°)	SD (°)	Angle of bending at 328 K (°)	SEM (°)	SD (°)
L _{10nm}	4.386	0.04933	2.20613	26.081	0.05646	2.52491
L _{30nm}	4.095	0.05956	2.34862	24.777	0.05616	2.51142
L _{50nm}	3.033	0.03746	1.67528	22.152	0.06766	2.62741
L _{70nm}	3.506	0.04647	1.82597	20.742	0.06157	2.75349
L _{90nm}	3.315	0.04069	1.66616	18.904	0.0682	2.5307
L _{110nm}	3.849	0.046	1.81929	23.865	0.0474	2.11963
$L_{110nm}(\Delta 32)$	13.066	0.1544	6.90483	42.616	0.0788	3.52405

Measurement of forces

The forces transmitted through the hairpins and linkers can be measured through the forces exerted by the traps modelling their attachment points to the sphere. These traps are harmonic, and so forces they exert have the form $\mathbf{F} = -k(\mathbf{r} - \mathbf{r_0})$ where \mathbf{F} is the instantaneous force, k is the spring constant or stiffness, \mathbf{r} is the position of the nucleotide at that instant and $\mathbf{r_0}$ is the equilibrium position of the trap. If \mathbf{F} is the total force acting on a nucleotide at any instance, the force through the hairpin is measured by defining a component of this force \mathbf{F}_{\parallel} which acts along the direction given by the vector $\mathbf{V_3} = \mathbf{B_i} - \mathbf{D_i}$ where $\mathbf{D_i}$ is the position of the top-most nucleotide in that strand (the nucleotide on which the trap force is being applied). So, we have:

$$\mathbf{F}_{||} = \mathbf{F} \cdot \frac{\mathbf{V}_3}{||\mathbf{V}_3||}$$

We can say that if $\mathbf{F}_{\parallel} > 0$, the linker/hairpin is under tension and if $\mathbf{F}_{\parallel} < 0$, the linker/hairpin is under compression. \mathbf{F} and \mathbf{F}_{\parallel} were measured at low and high temperatures for each hairpin and they were plotted along with their moving averages (calculated using 11 data points in the neighborhood of a particular data point). The force acting along the hairpins averaged over all configurations and all hairpins in the system is given in **Table S2**.

Table S2: Average force and standard error along hairpins (n = 6)

Configuration	Force along hairpins at 313 K (pN)	SEM (pN)	SD (pN)	Force along hairpins at 328 K (pN)	SEM (pN)	SD (pN)
L_{10nm}	-0.176	0.723	1.772	-0.628	0.246	0.603
L _{30nm}	-0.063	0.829	2.031	-0.402	0.415	1.016
L _{50nm}	-0.229	0.644	1.577	-0.075	0.588	1.441
L _{70nm}	-0.126	0.686	1.681	0.716	0.809	1.982
L _{90nm}	-0.101	0.709	1.737	2.609	2.035	4.985
L_{110nm}	0.310	0.965	2.364	4.457	1.847	4.524
$L_{110nm}(\Delta 32)$	-0.247	0.344	0.842	1.264	1.035	2.534

We note that there are fast fluctuations in the instantaneous force due to the trapped nucleotides oscillating around their average position in the trap center; thus, the force distribution is quite wide. At low temperature, we do not observe any of the hairpins breaking. Under high temperature conditions, some of the hairpins break which can be attributed to both thermal and mechanical effects. We clearly observe a trend in hairpin unfolding based upon the position of the hairpin on the origami. The hairpins close to the center of the origami (L_{10nm}) feel the least tension and the ones towards the extremes (L_{110nm}) feel the most tension. From **Table S1** it is clear that none of the systems have hairpins under strong tension at 313 K. At 328 K, only hairpins of L_{110nm} experience tension comparable to their F_{1/2} (~4.8 pN). When "mutual traps" are placed onto the

hairpin nucleotides, they are unable to break and relieve any of the tension. This leads to a small increase in the average force for the systems with hairpins far apart (mainly L_{90nm} and L_{110nm}).

Figure S1. Synthesis of pNIPMAm particle. First, the CTAB-gold nanorod was decorated with an alkene function group (N, N'-bis(acryloyl)cystamine) via ligand exchange. The polymer shell was then built by polymerization of 0.1g N-isopropylmethacrylamide and 0.01 g of the crosslinking agent N,N'-methylenebisacrylamide at 70°C for 2 hr. The alkyne functional group was introduced via dropwise injection of 0.01 ml of propargyl methacrylate monomer. DNA anchor was then incorporate on the particle surface via copper-free click chemistry.

Figure S2. Validating the specificity of DNA-guided OPFC assembly. Schematic and TEM images (a-b) along with fluorescence spectra demonstrating the importance of the 10 DNA crosslinks in boosting the yield of OPFC assembly. The data is representative from two replicates. To reduce the cost of DNA hairpin and origami that were used in replicates, only two hairpins were incorporated on the origami and the particle and DNA origami were mixed in a lower concentration than other OPFC experiments in this work. Fluorescence spectra of nearly identical samples prepared by mixing 8 μ l of 0.6 nM polymer particles with 50 μ l of 9 nM origami beam and allowed to hybridize overnight at room temperature. The sample was then washed 5 times (5000 rpm, 6 mins, in 5 mM Tris-HCl, 10 mM MgCl₂ and 1 mM EDTA at pH = 8) by centrifugation and redispersed for experiments. The fluorescence spectra in (c) were collected using a 520 nm excitation wavelength that was selected to excite the Cy3B dye while also providing some spectral separation from the strong scattering generated by the responsive particles. The Cy3B emission peak was at 575 nm and its intensity indicates the yield of OPFCs assembled with origami beams.

Figure S3. Characterization and validation of DNA-mediated OPFC assembly. (a-b): Schematic and TEM images of pNIPMAm particles with/without DNA handles (b-b*) incubated with DNA coated AuNPs. (c-d): Schematic and TEM images of pNIPMAm particles incubated with 16HB DNA origami loaded with/without target molecules. (e): Absorbance spectra of panel c and d confirms DNA-mediated assembly of OPFC. Absorbance spectra were collected using NanoDrop 2000 (Thermo Scientific) from 200 nm to 850 nm. Samples were prepared by mixing 15 μ l of 0.3 nM of polymer particles with 50 μ l of 30 nM origami beam or 50 μ l of ~ 1 nM 13nm lab-synthesized gold nanoparticles and allowed to hybridize overnight at room temperature. The sample was then washed 5 times (5000 rpm, 6 mins, in 5 mM Tris-HCl, 10 mM MgCl₂ and 1 mM EDTA at pH = 8) by centrifugation and redispersed in 40 μ l buffer B (5 mM Tris-HCl, 10 mM MgCl₂ and 1 mM EDTA at pH = 8) and measured shortly after sample preparation.

Figure S4. Quantification of origami beam number on polymer particles. (a) Absorbance spectroscopy of OPFC and controls. Stoichiometry between origami and particle is quantified using the extinction coefficient of the AuNR core within each OPFC ($\epsilon_{785\,\mathrm{nm}} = 3.7 \times 10^{10}\,\mathrm{M}^{-1}\mathrm{cm}^{-1}$) and the origami ($\epsilon_{260\,\mathrm{nm}} = 1 \times 10^8\,\mathrm{M}^{-1}\mathrm{cm}^{-1}$). Absorbance at 260 nm (Abs₂₆₀) was corrected by subtracting the absorbance at 260 nm of particle-DNA (blue curve, Abs₂₆₀^{particle-DNA}) from particle-origami sample (green curve, Abs₂₆₀^{particle-origami}). (b) Plots of origami beam copy number on each OPFC in different OPFC designs. Error bars represent the standard deviation from three independent measurements. Samples were prepared as described in **Figure S3**. 2 μl of each sample was added to NanoDrop 2000 spectrophotometer for absorbance measurement.

Figure S5. Fluorescence measurements of DNA hairpin in folded and extended states. (a) Spectra showing the fluorescence intensity of DNA hairpin before (black) and after (red) hybridizing to a 17mer short oligonucleotide (sequence shown in **Table S1**). The fluorophore (Cy3B) and quencher (QSY9) pair positioned on complementary strands of the hairpin. To unfold the DNA hairpin, 150 nM of DNA hairpin was hybridized with 1.5 μ M 17mer complementary DNA for 3hr at room temperature. (b) Spectra showing the fluorescence intensity of hairpins lacking the arms and only including the stem region before (black, 20°C) and after (red, 70°C) thermal melting. The fluorophore (Cy3) and quencher (QSY9) pair positioned at the two ends of the hairpin. Both samples were prepared and measured at 150 nM in Buffer B (5 mM Tris-HCl, 10 mM MgCl₂ and 1 mM EDTA at pH = 8) and measured shortly after sample preparation. The significantly different maximum intensity between a and b is likely due to the different quantum yield of Cy3B and Cy3. (Cy3B is reported having ~8 fold greater fluorescence compared to Cy3 at equimolar concentration 25)

Figure S6. Thermal melting profile of target DNA hairpins. (a) Temperature-dependent fluorescence intensity of DNA hairpin and control lacking the stem-loop domain. The blue represents a control lacking the stem-loop while the yellow corresponds to the standard 4.7 pN hairpin used throughout this study. The increase in fluorescence is due to both the stem melting as well as arm melting, and these two transitions are overlapping with stem $T_m = 64^{\circ}C$ and arm $T_m = 72^{\circ}C$. Error bars correspond to the standard deviation of triplicate measurements. (b) Fluorescence intensity difference between hairpin and no-stem loop control as measured from the thermal melting experiments. (c) A normalized plot using the data from panel B in the range from 20°C to 70°C. (d) Temperature-dependent fluorescence intensity of DNA hairpins identical to the one studied through this work but lacking the arms. The T_m here was = 62°C confirming minimal contribution from the arms. For all these measurement, [DNA] = 150 nM and the hairpin was prepared from a 1:1:1 mixture of the three oligonucleotides comprising the hairpin probe. Measurements were performed in Buffer B (5 mM Tris-HCl, 10 mM MgCl₂ and 1 mM EDTA, pH = 8).

Figure S7. Characterization of transition temperature of particle actuators. (a) Hydrodynamic diameters of particles as a function of temperature. The data was fit with a Boltzmann sigmoid function. (b) Calculated first derivative of the data shown in **a**, confirming transition temperature LCST= 45°C and FWHM= 8°C.

Figure S8. Design of flexible origami beams ($\Delta 32$). (a) Schematic showing the $\Delta 32$ origami beam. The deletion of 16 staple strands in the center of the origamis gives the structure significantly more flexibility. (b) Representative TEM image showing bending of $\Delta 32$ structures.

Figure S9. Zero-force control OPFC device with target hairpins located at the opposite face away from the particle actuator. (a) Schematics of zero-force control. In this experiment, we created chemically identical OPFC loaded with the same target, but with a geometric mutation. The hairpin was placed on the opposite face of the beam away from the 10 crosslinks and the particle. In this case, the collapse of the particle is not expected to generate any mechanical tension on the hairpin. (b) Bulk temperature-dependent fluorescence measurements of zero-force control showed no notable mechanical unfolding signal in the 45-55°C window. Samples were prepared by mixing 15 μ l of 0.3 nM of polymer particles with 50 μ l of 30 nM origami beam. The mixture was then washed by centrifuge and redispersed in 40 μ l Buffer B as described before in the methods section. Error bars represent the standard deviation from triplicate preparations of the zero-force control OPFC. The black line is the same fit as the DNA-OPFC data shown in Fig. 1d (blue curve).

Figure S10. Temperature calibration curve of T-jump experiment with Rhodamine B standard. (a) Calibration curve measuring the temperature-dependent emission of Rhodamine B at a concentration = 150 nM. The temperature was ramped from 20 to 50 °C and controlled using a water bath and allowed to come to equilibrium for 5 min at each temperature. Error bars represent the standard deviation from triplicate measurements. The red line represents a linear regression to the data (Intensity = -0.0102*Temperature + 1.1038, R²=0.9907). (b) Time-resolved fluorescence signal of Rhodamine B following a 10 nsec pump. The plot shows a 10% reduction of fluorescence intensity, which indicates a 10°C temperature jump, and confirms the 3 μ s instrument response time.

Figure S11. Spectra of T-jump experiments. Three replicates (i)-(iii) of temperature jump ($\Delta T = 10^{\circ}C$) showing transients of DNA hairpin (100 nM) thermal melting in buffer B. The data is fitted to a single exponential (black line). The colors indicate the initial temperature of the sample and ranged from 30°C to 65°C. Importantly, there was no thermal melting signal when the initial temperature was 45°C or lower. This is consistent with the bulk fluorescence data showing that the T_m of the hairpins is 64°C.

Figure S12. Spectra of F-jump experiments. Three replicates (i)-(iii) of force jump measurements ($\Delta T = 10^{\circ}$ C) showing transients of mechanical unfolding of DNA hairpins (~100 nM) loaded onto the OPFC. The data is fitted to a single exponential (black line). The colors indicate the initial temperature of the sample and ranged from 30°C to 65°C. Importantly, there is now a mechanical melting signal when the initial temperature was 45°C which is consistent with the LCST of pNIPMAm.

Figure S13. Schematic of the 16HB origami generated by caDNAno. Blue: p7560 scaffold strand, Red: hairpin binding staples. Orange: particle binding staples. Additional information showing full staple sequences can be found in **Table S1-3**.

Table S1. Oligonucleotide ID and sequences used in this work.

Strand ID	DNA Sequences (5' to 3')
particle-linker (sequence b*)	GCA GTG TGT GAG TGG TTT CAG TTT /3AzideN/
hairpin	CTG AAA CCA CTC ACA CAC TGC /iUniAmM/ GTA TAA ATG TTT TTT TCA TTT ATA C AGC GCC ACG TAG CCC AGC
no-stem-loop	CTG AAA CCA CTC ACA CAC TGC/iUniAmM/AGC GCC ACG TAG CCC AGC
17-mer	GAA AAA AAC ATT TAT AC
anchor 1	TTTCAGGGCCACCCTCCGATTGGCGAATCAAGGTCACCAA-
(sequence a*)	TT-GCTGGGCTACGTGGCGCT
anchor 2	CGGAACCTGTTTTAACGCCAGAATCCGGAAACTTTGCCTT-
(sequence a*)	TT-GCTGGGCTACGTGGCGCT
anchor 3	AGGTCAGAAGAACCGCTTCATAATCAAAATCA-TT-
(sequence a*)	GCTGGGCTACGTGGCGCT
anchor 4	GCGTTATAGCACCCAGCCGGTATTCGTCAAAAGACGGGAG-
(sequence a*)	TT-GCTGGGCTACGTGGCGCT
anchor 5	AGCATGTAAATAATCGTACCGCGCGCGCATTAATGAAAAT-
(sequence a*)	TT-GCTGGGCTACGTGGCGCT
anchor 6	AGGCTTATCTACAATTTCTTACCAACGCTAAC-TT-
(sequence a*)	GCTGGGCTACGTGGCGCT
crosslink 1	CTGAAACCACTCACACACTGC-TT-
(sequence b)	ACATAAAAATAGCTAAACAGTAC
crosslink 2	CTGAAACCACTCACACACTGC-TT-
(sequence b)	AACGTTATAAGTAAGCTTTTCAGG
crosslink 3	CTGAAACCACTCACACACTGC-TT-
(sequence b)	AATTCGACAGGAAACCCAGAAGAT
crosslink 4	CTGAAACCACTCACACACTGC-TT-
(sequence b)	TATGATACACCCAAAAGTGCCTAA
crosslink 5	CTGAAACCACTCACACACTGC-TT-
(sequence b)	CTAATCTAATTACGCAACGAGCCG
crosslink 6	CTGAAACCACTCACACACTGC-TT-
(sequence b)	TATGACAACATACATAATCTGCCA
crosslink 7	CTGAAACCACTCACACACTGC-TT-
(sequence b)	CTTAAGTGGCAAAGACATATCGCG
crosslink 8	CTGAAACCACTCACACACTGC-TT-
(sequence b)	GTCAGGACACAATCAAAAAAGATT
crosslink 9	CTGAAACCACTCACACACTGC-TT-
(sequence b)	TATGCGATCGCCAAAGTATTATAG
crosslink 10	CTGAAACCACTCACACACTGC-TT-
(sequence b)	TTAATTTCTGAGGGAGTGTGTCGA

Table S2. Origami scaffold sequence (p7560)

AGCTTGGCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAA ${\tt CTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGC}$ ACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCTTTGCCTGGTTTC CGGCACCAGAAGCGGTGCCGGAAAGCTGGCTGGAGTGCGATCTTCCTGAGGCCGATACTG TCGTCGTCCCTCAAACTGGCAGATGCACGGTTACGATGCGCCCATCTACACCAACGTGA CCTATCCCATTACGGTCAATCCGCCGTTTGTTCCCACGGAGAATCCGACGGGTTGTTACTC GCTCACATTTAATGTTGATGAAAGCTGGCTACAGGAAGGCCAGACGCGAATTATTTTTGA TGGCGTTCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAATGCGAATTTTAACA AAATATTAACGTTTACAATTTAAATATTTGCTTATACAATCTTCCTGTTTTTTGGGGCTTTTC TGATTATCAACCGGGGTACATATGATTGACATGCTAGTTTTACGATTACCGTTCATCGATT CTCTTGTTTGCTCCAGACTCTCAGGCAATGACCTGATAGCCTTTGTAGATCTCTCAAAAAT AGCTACCCTCTCCGGCATTAATTTATCAGCTAGAACGGTTGAATATCATATTGATGGTGAT TTGACTGTCTCCGGCCTTTCTCACCCTTTTGAATCTTTACCTACACATTACTCAGGCATTGC ATTTAAAATATATGAGGGTTCTAAAAATTTTTATCCTTGCGTTGAAATAAAGGCTTCTCCC GCAAAAGTATTACAGGGTCATAATGTTTTTGGTACAACCGATTTAGCTTTATGCTCTGAGG CTTTATTGCTTAATTTTGCTAATTCTTTGCCTTGCCTGTATGATTTATTGGATGTTAATGCTA CTACTATTAGTAGAATTGATGCCACCTTTTCAGCTCGCGCCCCAAATGAAAATATAGCTAA ACAGGTTATTGACCATTTGCGAAATGTATCTAATGGTCAAACTAAATCTACTCGTTCGCAG AATTGGGAATCAACTGTTATATGGAATGAAACTTCCAGACACCGTACTTTAGTTGCATATT TAAAACATGTTGAGCTACAGCATTATATTCAGCAATTAAGCTCTAAGCCATCCGCAAAAA TGACCTCTTATCAAAAGGAGCAATTAAAGGTACTCTCTAATCCTGACCTGTTGGAGTTTGC TTCCGGTCTGGTTCGCTTTGAAGCTCGAATTAAAACGCGATATTTGAAGTCTTTCGGGCTT CCTCTTAATCTTTTTGATGCAATCCGCTTTGCTTCTGACTATAATAGTCAGGGTAAAGACCT GATTTTTGATTTATGGTCATTCTCGTTTTCTGAACTGTTTAAAGCATTTGAGGGGGGATTCAA TGAATATTTATGACGATTCCGCAGTATTGGACGCTATCCAGTCTAAACATTTTACTATTAC CCCCTCTGGCAAAACTTCTTTTGCAAAAGCCTCTCGCTATTTTGGTTTTTATCGTCGTCTGG TAAACGAGGGTTATGATAGTGTTGCTCTTACTATGCCTCGTAATTCCTTTTGGCGTTATGTA TCTGCATTAGTTGAATGTGGTATTCCTAAATCTCAACTGATGAATCTTTCTACCTGTAATA ATGTTGTTCCGTTAGTTCGTTTTATTAACGTAGATTTTTCTTCCCAACGTCCTGACTGGTAT AATGAGCCAGTTCTTAAAATCGCATAAGGTAATTCACAATGATTAAAGTTGAAATTAAAC CATCTCAAGCCCAATTTACTACTCGTTCTGGTGTTTCTCGTCAGGGCAAGCCTTATTCACTG AATGAGCAGCTTTGTTACGTTGATTTGGGTAATGAATATCCGGTTCTTGTCAAGATTACTC TTGATGAAGGTCAGCCAGCCTATGCGCCTGGTCTGTACACCGTTCATCTGTCCTCTTTCAA AGTTGGTCAGTTCCCTTATGATTGACCGTCTGCGCCTCGTTCCGGCTAAGTAACAT GGAGCAGGTCGCGGATTTCGACACAATTTATCAGGCGATGATACAAATCTCCGTTGTACTT TGTTTCGCGCTTGGTATAATCGCTGGGGGTCAAAGATGAGTGTTTTAGTGTATTCTTTTGC CTCTTTCGTTTTAGGTTGGTGCCTTCGTAGTGGCATTACGTATTTTACCCGTTTAATGGAAA CTTCCTCATGAAAAAGTCTTTAGTCCTCAAAGCCTCTGTAGCCGTTGCTACCCTCGTTCCG ATGCTGTCTTTCGCTGCTGAGGGTGACGATCCCGCAAAAGCGGCCTTTAACTCCCTGCAAG CCTCAGCGACCGAATATATCGGTTATGCGTGGGCGATGGTTGTTGTCATTGTCGGCGCAAC TAAAGGCTCCTTTTGGAGCCTTTTTTTTGGAGATTTTCAACGTGAAAAAATTATTATTCGC AATTCCTTTAGTTGTTCCTTTCTATTCTCACTCCGCTGAAACTGTTGAAAGTTGTTTAGCAA AATCCCATACAGAAAATTCATTTACTAACGTCTGGAAAGACGACAAAACTTTAGATCGTT ACGCTAACTATGAGGGCTGTCTGTGGAATGCTACAGGCGTTGTAGTTTGTACTGGTGACG AAACTCAGTGTTACGGTACATGGGTTCCTATTGGGCTTGCTATCCCTGAAAATGAGGGTGG TGGCTCTGAGGGTGGCGGTTCTGAGGGTGGCGGTTCTGAGGGTGGCGGTACTAAACCTCC

TGAGTACGGTGATACACCTATTCCGGGCTATACTTATATCAACCCTCTCGACGGCACTTAT ${\sf CCGCCTGGTACTGAGCAAAACCCCGCTAATCCTAATCCTTCTCTTGAGGAGTCTCAGCCTC}$ TTAATACTTTCATGTTTCAGAATAATAGGTTCCGAAATAGGCAGGGGGCATTAACTGTTTA TACGGGCACTGTTACTCAAGGCACTGACCCCGTTAAAACTTATTACCAGTACACTCCTGTA TCATCAAAAGCCATGTATGACGCTTACTGGAACGGTAAATTCAGAGACTGCGCTTTCCATT ${\tt CTGGCTTTAATGAGGATTTATTTGTTTGTGAATATCAAGGCCAATCGTCTGACCTGCCTCA}$ TCTGGTTCCGGTGATTTTGATTATGAAAAGATGGCAAACGCTAATAAGGGGGCTATGACC GAAAATGCCGATGAAAACGCGCTACAGTCTGACGCTAAAGGCAAACTTGATTCTGTCGCT ACTGATTACGGTGCTATCGATGGTTTCATTGGTGACGTTTCCGGCCTTGCTAATGGTA ATGGTGCTACTGGTGATTTTGCTGGCTCTAATTCCCAAATGGCTCAAGTCGGTGACGGTGA TACGTTTGCTAACATACTGCGTAATAAGGAGTCTTAATCATGCCAGTTCTTTTGGGTATTC CGTTATTATTGCGTTTCCTCGGTTTCCTTCTGGTAACTTTGTTCGGCTATCTGCTTACTTTTC TTAAAAAGGGCTTCGGTAAGATAGCTATTGCTATTTCATTGTTTCTTGCTCTTATTATTGGG CTTAACTCAATTCTTGTGGGTTATCTCTCTGATATTAGCGCTCAATTACCCTCTGACTTTGT TCAGGGTGTTCAGTTAATTCTCCCGTCTAATGCGCTTCCCTGTTTTTATGTTATTCTCTCTGT AAAGGCTGCTATTTTCATTTTTGACGTTAAACAAAAAATCGTTTCTTATTTGGATTGGGAT AAATAATATGGCTGTTTATTTTGTAACTGGCAAATTAGGCTCTGGAAAGACGCTCGTTAGC GTTGGTAAGATTCAGGATAAAATTGTAGCTGGGTGCAAAATAGCAACTAATCTTGATTTA AGGCTTCAAAACCTCCCGCAAGTCGGGAGGTTCGCTAAAACGCCTCGCGTTCTTAGAATA CCGGATAAGCCTTCTATATCTGATTTGCTTGCTATTGGGCGCGGTAATGATTCCTACGATG AAAATAAAAACGGCTTGCTTGTTCTCGATGAGTGCGGTACTTGGTTTAATACCCGTTCTTG GAATGATAAGGAAAGACAGCCGATTATTGATTGGTTTCTACATGCTCGTAAATTAGGATG GGATATTATTTTCTTGTTCAGGACTTATCTATTGTTGATAAACAGGCGCGTTCTGCATTAG CTGAACATGTTGTTTATTGTCGTCGTCTGGACAGAATTACTTTACCTTTTGTCGGTACTTTA TATTCTCTTATTACTGGCTCGAAAATGCCTCTGCCTAAATTACATGTTGGCGTTGTTAAATA TGGCGATTCTCAATTAAGCCCTACTGTTGAGCGTTGGCTTTATACTGGTAAGAATTTGTAT AACGCATATGATACTAAACAGGCTTTTTCTAGTAATTATGATTCCGGTGTTTATTCTTATTT AACGCCTTATTTATCACACGGTCGGTATTTCAAACCATTAAATTTAGGTCAGAAGATGAAA TTAACTAAAATATATTTGAAAAAGTTTTCTCGCGTTCTTTGTCTTGCGATTGGATTTGCATC AGCATTTACATATAGTTATATAACCCAACCTAAGCCGGAGGTTAAAAAGGTAGTCTCTCA GACCTATGATTTTGATAAATTCACTATTGACTCTTCTCAGCGTCTTAATCTAAGCTATCGCT ATGTTTCAAGGATTCTAAGGGAAAATTAATTAATAGCGACGATTTACAGAAGCAAGGTT ATTCACTCACATATATTGATTTATGTACTGTTTCCATTAAAAAAAGGTAATTCAAATGAAAT TGTTAAATGTAATTAATTTTGTTTTCTTGATGTTTGTTTCATCATCTTCTTTTTGCTCAGGTAA TTGAAATGAATAATTCGCCTCTGCGCGATTTTGTAACTTGGTATTCAAAGCAATCAGGCGA ATCCGTTATTGTTTCTCCCGATGTAAAAGGTACTGTTACTGTATATTCATCTGACGTTAAAC CTGAAAATCTACGCAATTTCTTTATTTCTGTTTTACGTGCAAATAATTTTGATATGGTAGGT TCTAACCCTTCCATTATTCAGAAGTATAATCCAAACAATCAGGATTATATTGATGAATTGC CATCATCTGATAATCAGGAATATGATGATAATTCCGCTCCTTCTGGTGGTTTCTTTGTTCCG CAAAATGATAATGTTACTCAAACTTTTAAAAATTAATAACGTTCGGGCAAAGGATTTAATA CGAGTTGTCGAATTGTTTGTAAAGTCTAATACTTCTAAATCCTCAAATGTATTATCTATTG ACGGCTCTAATCTATTAGTTGTTAGTGCTCCTAAAGATATTTTAGATAACCTTCCTCAATTC AGCAAGGTGATGCTTTAGATTTTCATTTGCTGCTGGCTCTCAGCGTGGCACTGTTGCAGG TTAATGGCGATGTTTTAGGGCTATCAGTTCGCGCATTAAAGACTAATAGCCATTCAAAAAT ATTGTCTGTGCCACGTATTCTTACGCTTTCAGGTCAGAAGGGTTCTATCTCTGTTGGCCAG AATGTCCCTTTTATTACTGGTCGTGTGACTGGTGAATCTGCCAATGTAAATAATCCATTTC AGACGATTGAGCGTCAAAATGTAGGTATTTCCATGAGCGTTTTTCCTGTTGCAATGGCTGG CGGTAATATTGTTCTGGATATTACCAGCAAGGCCGATAGTTTGAGTTCTTCTACTCAGGCA AGTGATGTTATTACTAATCAAAGAAGTATTGCTACAACGGTTAATTTGCGTGATGGACAG ACTCTTTTACTCGGTGGCCTCACTGATTATAAAAACACTTCTCAGGATTCTGGCGTACCGT TCCTGTCTAAAATCCCTTTAATCGGCCTCCTGTTTAGCTCCCGCTCTGATTCTAACGAGGA AAGCACGTTATACGTGCTCGTCAAAGCAACCATAGTACGCGCCCTGTAGCGGCGCATTAA GCGCGGCGGTGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGC CCGCTCCTTTCGCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTC TAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAA ACTTGATTTGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCT TTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCA ACCCTATCTCGGGCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGAACCACCATC AAACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCAACTCTCTCAG GGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACC CTGGCGCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGG CACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAG CTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAA TTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGAATTCGAGC TCGGTACCCGGGGATCCTCCGTCTTTATCGAGGTAACAAGCACCACGTAGCTTAAGCCCTG TTTACTCATTACACCAACCAGGAGGTCAGAGTTCGGAGAAATGATTTATGTGAAATGCGT CAGCCGATTCAAGGCCCCTATATTCGTGCCCACCGACGAGTTGCTTACAGATGGCAGGGC CGCACTGTCGGTATCATAGAGTCACTCCAGGGCGAGCGTAAATAGATTAGAAGCGGGGTT ATTTTGGCGGGACATTGTCATAAGGTTGACAATTCAGCACTAAGGACACTTAAGTCGTGC GCATGAATTCACAACCACTTAGAAGAACATCCACCCTGGCTTCTCCTGAGAA

Table S3. Origami staples. Hairpin binding sites are labeled in red, crosslinker sites are highlighted in gray. To make the $\Delta 32$ structure, staples that are underlined were withheld from assembly solution.

Start	End	Sequence	Length
0[71]	5[71]	AATAGTGACAAGACAAAATTCTGTTCGAGCCA	32
0[103]	5[103]	CGATAGCTATCGTCGCACAAAATCGAATTATT	32
0[135]	5[135]	TTTGATTACACTTGCCGAATGGCTTGGCCAAC	32
0[167]	5[167]	ATCACGCAGCCTTGCTGGTTAAGAAAGCGTTG	32
0[199]	5[199]	AACCGTCTAGAGTCCAATTAATGATCTTTTCA	32
0[231]	5[231]	ATATGATACTAGCTGAGAGTAACAGCATTAAA	32
0[263]	<u>5[263]</u>	GAGAAAGGTATTTTTGGTAGCCAGTAACCAAT	<u>32</u>
0[295]	5[295]	TGAGTAATTCGGTTGTATTGCTGAGTAGCTCA	32
0[327]	5[327]	TTAGAACCTACTTTTGAGAGGTCAGTACGGTG	32
0[359]	5[359]	CCGATAGTATGACAACCTCATCTTAAATACGT	32
0[391]	5[391]	CTTTCGAGATATTCGGAGGCGAAATAAAAGTT	32
0[423]	5[423]	GGAGCCTTAGCGGAGTTGCTCAGTTGTATCAC	32
1[56]	7[63]	TCCAATCGATTTATCAAATTTACG	24
1[88]	7[95]	TTCTGTAATAGATTAAGAAACAAT	24
1[120]	7[127]	CTTAACATGTAATAGACGCGAACT	24
1[152]	7[159]	AACTATCGAATTAACCAAAATACC	24
1[184]	7[191]	TTGGAACAATCACCGACACTGCCC	24
1[216]	7[223]	ACTCCGTTTTCAACCACCGTGGGA	24
1[248]	<u>7[255]</u>	<u>AGGGTAGCCCGGAGACGGATAGGT</u>	<u>24</u>
1[280]	7[287]	AAGCTAAAGTGTAGGTTCAAAGCG	24
1[312]	7[319]	CCCTGTAACTCATATACAGGTCAG	24
1[344]	7[351]	TTCCGACATGCGCAACTATACCAA	24
1[376]	7[383]	TAACCGATGTGAATTTTTTGTATC	24
1[408]	7[415]	ACAGTTTCTAATTGTAGCCTATTT	24
2[71]	4[64]	TATTTTAGTAGAAAAATATCATAT	24
2[103]	4[96]	ATATGTGATTTCATTTATGATGAA	24
2[135]	4[128]	CAGGAAAAAATACCTGTCACACG	24
2[167]	4[160]	ATCCAGAAAATGGTCCCAAGCGGA	24
2[199]	4[192]	ATCAAAAGAAATCCTGCCCTTCAC	24
2[231]	4[224]	GATGAACGAACTAGCAATTGTAAA	24
2[263]	4[256]	TTGCCTGAATAATCAGAAAACAGG	<u>24</u>
2[295]	4[288]	AGCAATAACTATATTTGTTTGACC	24
2[327]	4[320]	CATACAGGGTGGCATCTTGATTCC	24
2[359]	4[352]	GGATCGTCGCGAAAGATTTCATGA	24
2[391]	4[384]	AGGCTTGCGGCCATGTGAACCTAC	24
2[423]	4[416]	GTAAATGAAGTACAAAACCCTCAT	24
3[48]	5[63]	CCGGAATCATAATTACTTAATTTCAGGCATTT	32
3[80]	5[95]	TAATTACATTTAACAAGTGAATAAAAGGAGGC	32
3[112]	5[127]	TTTTTTAATGGCATGGACGCTAAAGGACATTC	32
3[144]	5[159]	ACGCTCAATCGTCTGACAATATTATGACCTGA	32

3[176]	5[191]	TTGCCCCAGCAGGCGAAATAGCCCGTGGTTTT	32
3[208]	5[223]	TGGTTCCGAAACGTAAGTAATTCGTAAAATTC	32
3[240]	5[255]	ATATGTACCCCGGTTGGAGTCTGGTCATTTTT	<u>32</u>
3[272]	5[287]	TCAATAACCTGTTTAGAGCCTCAGATAATGCT	32
3[304]	5[319]	GGCGCGAGCTGAAAAGCAAGGCAACAACTAAA	32
3[336]	5[351]	TAATAGTAGTACAGCAACCCTGCAAACGGGTA	32
3[368]	5[383]	GAACGAGGTAGCAACAGGGAGTTCACCAACC	32
3[400]	5[415]	ACTGAGTTTCGTCACCATTTTCTGGGAATAGG	32
4[63]	14[56]	GCGTTATAGCACCCAGCCGGTATTCGTCAAAAGACGGGAG	40
4[95]	14[88]	ACAAACATAATTCATCTACCATATAGACATTAAGTAAATA	40
4[127]	14[120]	ACCAGTAAATAATCAACCTCACTTATTAGAGCTTTGCCCG	40
4[159]	14[152]	TTATTTACAGTTGAAAAGCATCACATTTAGAATTACAAAC	40
4[191]	14[184]	CGCCTGGCCAGGGCTTCTCGAATTCTCGTCGGAGTGACTC	40
4[223]	14[216]	CGTTAATAGATTGCGGATCGGAAACAGTGCCACCCCGCTT	40
4[255]	14[248]	AAGATTGTGCGAAAGGCCATTCAGGGATGTTCGTCAACCT	<u>40</u>
4[287]	14[280]	ATTAGATACCTCGTTTTATTCATTGCATAATATACGTCGA	40
4[319]	14[312]	CAATTCTGTAGCGAGAGATAGCGTTTACAGGTTTATACCA	40
4[351]	14[344]	GGAAGTTTAGATAGGCGCGCAGGGATAAGGCTAATTACCT	40
4[383]	14[376]	AGAGGCTTCTTGACAAGAAGAGGGAGTAGTAGAGATGGT	40
4[415]	14[408]	TTTCAGGGCCACCCTCCGATTGGCGAATCAAGGTCACCAA	40
6[63]	15[63]	CCAGACGAGGAATCATGCTGTCTTAAGAGCAA	32
6[87]	0[72]	CGACAAAACATCGGGAGACGCTGAGAAGAGTC	32
6[95]	15[95]	GCGCATACTATTTGCATATACAGTTCTTACCG	32
6[119]	0[104]	TTATGAATTGCTTATGATCCTTGAAAACATAG	32
6[127]	15[127]	ATTAGTCTCGTGTATTGGTCAAGAAGATAGCC	32
6[151]	0[136]	CACAGACACGCCATTAGTTGTAGCAATACTTC	32
6[159]	15[159]	ATACGTGGCTGAGAGCACCACCAGGAGGAAAC	32
6[183]	0[168]	ACGCGCGGGTTGCGCTGTAAAAGAGTCTGTCC	32
6[191]	15[191]	ATCGGCCAGTGTGAAAAGCCTGGGGAACTGGC	32
6[215]	0[200]	GATTCGTGACCTGTCTACGTCAAAGGGCGAAA	32
6[223]	15[223]	ACCCGTCGCAAATCGGACAGTCATGTATGTTA	32
<u>6[247]</u>	0[232]	AACATTAACCGTAATGAGTCAAATCACCATCA	<u>32</u>
<u>6[255]</u>	<u>15[255]</u>	CTTTCATCAGCTTTCCAACCGTGCAAGGTGGC	<u>32</u>
6[279]	0[264]	CGCGTCTGTTCGAGCTAAAGATTCAAAAGGGT	32
6[287]	15[287]	ATATAATTCCCTCAAAGACTTCAAACCACGGA	32
6[311]	0[296]	GATGGCTTAACTCCAATTTTAAATGCAATGCC	32
6[319]	15[319]	TTTTTGCGGAATGACCTTGCATCATAGAAAAT	32
6[343]		AGCGCTCCTAATTGATGCAAGGATAAAAATTT	32
<u> </u>	0[328]	7100001201711111011	<u> </u>
6[351]	0[328] 15[351]	TGACCCCCCTTACTTCATGTGACACAAAAGG	32
			-
6[351]	15[351]	TGACCCCCCTTACTTCATGTGACACAAAAGG	32
6[351] 6[375]	15[351] 0[360]	TGACCCCCCTTACTTCATGTGACACAAAAGG AGAATACAAACGGAGACTTAAACAGCTTGATA	32 32

196 13 103 AACGGATTCAGATGAACGTAAAACAAAGTTTGTCATTTTG 40 7 128 13 135 GATAGCCCGGTGAGGCAACACCGCTTAAATCCCGTCAATA 40 7 160 13 167 GAATCACCAACAACCAGCAGCACGACCGGAGACTGTATTCCC 40 7 192 13 199 GCTTTCCAAAGTGTTATTCCCCCCTGGTGGGCACG 40 7 224 13 231 ACAAACGGGGACCACGCCTCAGGACAAAATAAAACCTTTCT 40 7 256 13 263 CACGTTGGCGCACGTCTGTGGCCACGCCTCAGGACAAAATAAAACCTTTCT 40 7 256 13 295 AACCAGACGCCCCGCATCGTGGCACCGCCTGAATTTTCTAAGT 40 7 320 13 327 GATTAGAGAAAACCGGCCCGAAATGCTTTAAGAAAAATCAAACGAAC 40 7 320 13 327 GATTAGAGAAAACCGGCCCGAAATGCTTTAAGAAAAAATCAAACGAAC 40 7 352 13 359 GCGCGAAAACCTGCTCCAGCCGGAATCATTGTGTGCCCCTGA 40 7 364 13 391 ATCTATAAGCCCGGCCGGAACCGACCGGCTTAATTGACC 40 7 416 13 423 CGGAACCTGTTTTAAAGCCCAGAATCCTGGAAACTTTGCCCTT 40 8 79 2 72 CTTCAATCGAAACTTAGGTAAAACATAATTTTTTTTAGTGTAGACATTGACA 40 8 143 2 104 TTTAACGTCGCCTGATACCAAGTTTATTAATTAAATCAAT 40 8 119 2 104 TTTAACGTCGCCTGATACCAAGTTTATTTAATTAAATCAAT 40 8 143 2 136 AAAACAGATAAAACATATATTTTTTAGTTGAGCATTGCAA 40 8 1207 2 200 GAAGCATAGTCGGGAACCAGCGGCTGTTGTTGAAAT 40 8 207 2 200 GAAGCATAGTCGGGAACCAGCTGCCTTATAAA 40 8 239 2 232 GTTTGAGGCGGATTGAATTGAGCTTAAAACATATATTTTTTAGGTTGACATTGCAA 40 8 239 2 232 GTTTGAGGCGGATGACCAGCTGCCTTATAAACCTTAAAA 40 8 239 2 232 GTTTGAGGCGGAACCAGCTGCCTTATAAACCTTAAAACATAAACAAAATTAA 40 8 239 2 2321 GTTTGAGGCGGAACCAGCTGCCTTATAAACCTTAAAACCATAAACCATCAACCATCACCAAGAACCACCACCACCACCACCACCACCACCACCAC	6[439]	0[424]	AGGATTAGGAAACATGAAAAAAGGCTCCAAAA	32
	7[64]	13[71]	AGCATGTAAATAATCGTACCGCGCGCGCATTAATGAAAAT	40
	7[96]	13[103]	AACGGATTCAGATGAACGTAAAACAAAGTTTGTCATTTTG	40
	7[128]	13[135]	GATAGCCCGGTGAGGCAACACCGCTTAAATCCCGTCAATA	40
13 231	7[160]	13[167]	GAATCACACTAACCGACAGCAGCACGGAGACTGTATTCCC	40
Tigosi	7[192]	13[199]	GCTTTCCAAAGTGTAATTGTTATCCGCCCTGGTGGGCACG	40
7 288 13 295 AACCAGACGCCCGAAATGCTTTAAGAAAAATCAAACGAAC 40 7 320 13 327 GATTAGAGAAAGCGGAATAAATCACTGGCTCAAGAAAGAT 40 7 352 13 359 GCGCGAAAACCTGCTCAGCCGGAATCATTGTGTGCCCTGA 40 7 384 13 391 ATCTATAAGCCCGGCCGGGAACCGTGCTCAGCCGGATCATTTGACC 40 7 416 13 423 CGGAACCTGTTTAACGCCAGAACCGGCGTTAATTGACC 40 8 79 2 72 CTTCAATCGAAACTTAGGTAAAGAACGGGTTCAAATA 40 8 111 2 104 TTTAACGTCGCCTGATACCAAGTTATAATTAAATCAAT 40 8 111 2 104 TTTAACGTCGCCTGATACCAAGTTATAATTAAATCAAT 40 8 175 2 168 TGAGTGAGTAAATATATTTTTTTGAGTAGAACTTAGAA 40 8 175 2 168 TGAGTGAGTTAATTGCGAAGAGGCGTTGTTGAAAT 40 8 207 2 200 GAAGCATAGTCGGGAACCAGCTGCCTATTAAACCTTAAA 40 8 239 2 232 GTTTGAGGCGGGATGAATGAGAACTTACAATTAATAAACCTTATAA 40 8 239 2 232 GTTTGAGGCGGGATTGAATGAAGTAAATTAAAGAGAATC 40 8 239 2 232 GTTGAGGCGGATTGAATGAAGTAAATTAAAGAGAATC 40 8 303 2 296 AAGAGGAACGGATTGAAGTAAATTAAAGAGAATC 40 8 303 2 296 AAGAGGAACGGAAGAACCATGCGCTAAATTAACAAAACAAAC	7[224]	13[231]	ACAAACGGGGACGACGCCTCAGGACAAAATAAAGCTTTCT	40
13 327 13 327 GATTAGAGAAAGCGGAATAAATCACTGGCTCAAGAAAGAT 40 7 352 13 359 GCGCGAAAACCTGCTCAGCCGGAATCATTGTGTGCCCTGA 40 7 384 13 391 ATCTATAAGCCCGGCCGGGAACCGAGCGGCTTAATTGACC 40 40 40 40 40 40 40	7[256]	13[263]	CACGTTGGCGCATCGTGGCACCGCGCTGAATTTTCTAAGT	<u>40</u>
13 13 13 35 GCGCGAAAACCTGCTCAGCCGGAATCATTGTGTGCCCTGA 40 7 13	7[288]	13[295]	AACCAGACGCCCGAAATGCTTTAAGAAAAATCAAACGAAC	40
13 13 3 ATCTATAAGCCCGGCCGGGAACCGAGCGGCTTAATTGACC 40 7 13 13 23 CGGAACCTGTTTTAACGCCAGAATCCGGAAACTTTGCCTT 40 8 7 2 12 2 CTTCAATCGAAACTTAGGTAAAGTAGAACGCGTTCAAATA 40 8 11 2 104 TTTAACGTCGCCTGATACCAAGTTTATTAATTAAATCAAT 40 8 13 2 136 AAAACAGATAAAACATATTTTTTTGAGTAGACATTGCAA 40 8 15 2 168 TGAGTGAGTTAATACAAT 40 8 17 2 168 TGAGTGAGTTAATACAAT 40 8 17 2 12 200 GAAGCATAGTCGGGAACCAGCTGCCTATTAAACCTTATAA 40 8 23 2 232 GTTTGAGGCGGATTGAATGTGAGACATTAAACCTTATAA 40 8 23 2 232 GTTTGAGGCGGATTGAATGTGAGACTTCCTAGAGATCTTCAGGTCA 40 8 23 2 264 TTTATGGGTGTAGTAAGCCTTCCTAGAGATCTTCAGGTCA 40 8 30 2 296 AAGAGGAACGAACGAGAGCCTTAACCAAAAACAAAATTA 40 8 33 3 2 23 8 TCAGAAGCAGTACCTTTTTTGATACGGGAGAACCAACAAAATTA 40 8 39 2 39 2 392 GTAACAGTACCTTAAACCATCAGCTTTTTGCG 40 8 39 2 39 2 30 AATCCGCGCAAAGTACCTTAAACCATCGCTTTTTGCG 40 8 43 2 2424 GGTAATAAATTATTCTCGGGGTTTGAGAAACTAAACTTTGCCTG 40 8 43 2 2424 GGTAATAAATTATTCTCGGGGTTTGAGAATAGAGACGTTA 40 10 11 12 56 AGGCTTACTACAATTTCTTACCAACGCTAAC 32 10 12 12 12 14 12 14 12 14 12 14	7[320]	13[327]	GATTAGAGAAAGCGGAATAAATCACTGGCTCAAGAAAGAT	40
Times	7[352]	13[359]	GCGCGAAAACCTGCTCAGCCGGAATCATTGTGTGCCCTGA	40
8[79] 2[72] CTTCAATCGAAACTTAGGTAAAGTAGAACGCGTTCAAATA 40 8[111] 2[104] TTTAACGTCGCCTGATACCAAGTTTATTAAATCAAT 40 8[143] 2[136] AAAACAGATAAAACATATATTTTTTGAGTAGACATTGCAA 40 8[175] 2[168] TGAGTGAGTTAATTGCGGAAGCGGTGTTGTTGAAAT 40 8[207] 2[200] GAAGCATAGTCGGGAACCAGCTGCCTATTAAACCTTATAA 40 8[239] 2[232] GTTTGAGGCGGATTGAATGTGAGCTAAATTAAAGAGAATC 40 8[239] 2[264] TTTATGGGTGTAGTAAGCCTTCCTAGAGATCTTCAGGTCA 40 8[330] 2[296] AAGAGGAACGGAAGCAAGAGCTTAACCAAAACAAACAAAATTA 40 8[335] 2[328] TCAGAAGCAGTACCTTTTTTGATACCGAGAGAACCAATCACTTTTGCG 40 8[367] 2[360] AATCCGCGCAAAGTACCTTAACCGACGCATCGCTTTTGCG 40 8[399] 2[392] GTAACAGTACAGTTAACCGTCGAGTCGTAAACTTTGCCTG 40 8[431] 2[424] GGTAATAAATTATTCTCGGGGTTTGAGAATAGAGACGTTA 40 10[71] 12[56] AGGCTTATCTACAATTTCTTACAACGTCATCATA 32 10[103] 12[88] TTAGAACCAATATAATCGGAATTATCACATA 32 10[103	7[384]	13[391]	ATCTATAAGCCCGGCCGGGAACCGAGCGGCTTAATTGACC	40
8[111] 2[104] TTTAACGTCGCCTGATACCAAGTTTATTAATTAAATCAAT 40 8[143] 2[136] AAAACAGATAAAACATATTTTTTTGAGTAGACATTGCAA 40 8[175] 2[168] TGAGTGAGTTAATTGCGGAGAGGCGGTGTGTTGTTGAAAT 40 8[207] 2[200] GAAGCATAGTCGGGAACCAGCTGCCTATTAAACCTTATAA 40 8[239] 2[232] GTTTGAGGCGGATTGAATGTGAGCTAAACTAAAGAGAATC 40 8[239] 2[296] AAGAGGAACGGAAGCATACCTTCCTAGAGATCTTCAGGTCA 40 8[303] 2[296] AAGAGGAACGGAAGCATACCTTATTTGATACCAAAAACAAAC	7[416]	13[423]	CGGAACCTGTTTTAACGCCAGAATCCGGAAACTTTGCCTT	40
8[143] 2[136] AAAACAGATAAAACATATATTTTTTGAGTAGACATTGCAA 40 8[175] 2[168] TGAGTGAGTTAATTGCGGAGAGGCGGTGTTTGTTGAAAT 40 8[207] 2[200] GAAGCATAGTCGGGAACCAGCTGCCTATTAAACCTTATAA 40 8[239] 2[232] GTTTGAGGCGGATTGAATGTAGCCTAAATTAAAGAGAATC 40 8[271] 2[264] TTTATGGGTTGATAAACCTTACAGAGATTTCAGGTCA 40 8[303] 2[296] AAGAGGACGGAAGCAAGAGCTTAACCAAAAACAAATTAA 40 8[335] 2[328] TCAGAAGCAGTACCTTTTTTGATACGGGAGAACAATAAAT 40 8[367] 2[360] AATCCGCGCAAAGTACCTTATTTTGATACGGGAGAACAATAAAT 40 8[399] 2[392] GTAACAGTACAGTTAACCGTCGAGTCGTAAACTTTGCCTG 40 8[431] 2[424] GGTAATAAATTATCTCCGGGGTTTGAGAATAGAGACCTTA 40 10[71] 12[56] AGGCTTATCTACAATTCTTACCAACGCTAAC 32 10[103] 12[88] TTAGAACCAATATAACGGAACACTAACAAC 32 10[167] 12[152] AAATCTAAGGACTGGTACCTCATTGAGAGAG 32 10[167] 12[184] GTACCGAGAAGCTACGCATTCACATAATC 32 10[231] 12[8[79]	2[72]	CTTCAATCGAAACTTAGGTAAAGTAGAACGCGTTCAAATA	40
8[175] 2[168] TGAGTGAGTTAATTGCGGAGAGGCGGTGTGTTGTTGAAAT 40 8[207] 2[200] GAAGCATAGTCGGGAACCAGCTGCCTATTAAACCTTAAA 40 8[239] 2[232] GTTTGAGGCGGATTGAATGTGAGCTAAATTAAAGAGAATC 40 8[271] 2[264] TTTATGGGTGTAGTAAGCCTTCCTAGAGATCTTCAGGTCA 40 8[303] 2[296] AAGAGGAACGAAGCAAGAGCTTAACCAAAACAAAATTA 40 8[335] 2[328] TCAGAAGCAGTACCTTTTTTGATACGGAGAACAAAAATA 40 8[367] 2[360] AATCCGCGCAAAGTACCTTAAAACAAACCATCGCTTTTTGCG 40 8[367] 2[360] AATCCGCGCAAAGTACCTAAAACAACCATCGCTTTTTGCG 40 8[367] 2[360] AATCCGCGCAAAGTACCTAAAACAACCATCGCTTTTTGCG 40 8[361] 2[424] GGTAACAGTACAGTTAACCGTCGAGTCGTAACCTTCTGCAGAGCCTTA 40 10[71] 12[56] AGGCTTATCTACAATTTCTTCTACCAACGCTAAC 32 10[103] 12[88] TTAGAACCAATATAATCGGAATTATCATCATA 32 10[103] 12[18] GTACAAAGACCTGGTACCTCATTGAGGAAGAGG 32 10[167] 12[152] AAATCTAAGGACTGGTACCTCATTGAGAAAC 32 10[267]	8[111]	2[104]	TTTAACGTCGCCTGATACCAAGTTTATTAATTAAATCAAT	40
8[207] 2[200] GAAGCATAGTCGGGAACCAGCTGCCTATTAAACCTTATAA 40 8[239] 2[232] GTTTGAGGCGGATTGAATGTGAGCTAAATTAAAGAGAATC 40 8[271] 2[264] TTTATGGGTGTAGTAAGCCTTCCTAGAGATCTTCAGGTCA 40 8[303] 2[296] AAGAGGAACGGAAGCAAGAGCTTAACCAAAAACAAAATTA 40 8[335] 2[328] TCAGAAGCAGTACCTTTTTTGATACCGGAGAACAATAAAT 40 8[367] 2[360] AATCCGCGCAAAGTACCTTAAACCATCGCTTTTGCG 40 8[399] 2[392] GTAACAGTACAGTTAACCGTCGAGTCGTAAACTTTGCCTG 40 8[431] 2[424] GGTAATAAATTATTCTCGGGGTTTGAGAATAGAGACGTTA 40 10[71] 12[56] AGGCTTACTACAATTTACCAACGCTAAC 32 10[103] 12[88] TTAGAACCAATATAATCGGAATTATCACTATA 32 10[103] 12[88] TTAGAACTACTCGGTTAGGAGCACTAACAAC 32 10[167] 12[152] AAATCTAAGGACTGGTACCTCATTGAGGAAGG 32 10[167] 12[184] GTACCGAGAAGCTACGGCATTTCACATAAAC 32 10[263] 12[248] GCCATTCGGGGATGTGATTAAGTTGGGTAACG 32 10[263] 12[248]	8[143]	2[136]	AAAACAGATAAAACATATATTTTTTGAGTAGACATTGCAA	40
8[239] 2[232] GTTTGAGGCGGATTGAATGTGAGCTAAATTAAAGAGAATC 40 8[271] 2[264] TTTATGGGTGTAGTAAGCCTTCCTAGAGATCTTCAGGTCA 40 8[303] 2[296] AAGAGGAACGGAAGCAAGAGCTTAACCAAAAACAAAATTA 40 8[335] 2[328] TCAGAAGCAGTACCTTTTTTGATACGGGAGAACAATAAAT 40 8[367] 2[360] AATCCGCGCAAAGTACCTAAAACAAACCATCGCTTTTGCG 40 8[399] 2[392] GTAACAGTTAACCGTCGAGTCGTAAACTTTGCCTG 40 8[431] 2[424] GGTAATAAATTATTCTCGGGGTTTGAGAATAGAGACGTTA 40 10[71] 12[56] AGGCTTACTACAATTTCTTACCAACGCTAAC 32 10[103] 12[88] TTAGAACCAATATAATCGGAATTATCACTAA 32 10[135] 12[120] TATCAAACTATCTGGTTAGGAGCACTAACAAC 32 10[167] 12[152] AAATCTAAGGACTGGTACCTCATTGAGGAAGG 32 10[199] 12[184] GTACCGAGAAGCTACGGCATTTCACATAAATC 32 10[231] 12[216] GAAGGGCGGCCTCTTCCACGACGTTGTAAAAC 32 10[263] 12[248] GCCATTCGGGGATTTAAGTTGGGTAACG 32 10[295] 12[312] <td< td=""><td>8[175]</td><td>2[168]</td><td>TGAGTGAGTTAATTGCGGAGAGGCGGTGTGTTGTTGAAAT</td><td>40</td></td<>	8[175]	2[168]	TGAGTGAGTTAATTGCGGAGAGGCGGTGTGTTGTTGAAAT	40
8[271] 2[264] TTTATGGGTGTAGTAAGCCTTCCTAGAGATCTTCAGGTCA 40 8[303] 2[296] AAGAGGAACGGAAGCAAGAGCTTAACCAAAAACAAAATTA 40 8[335] 2[328] TCAGAAGCAGTACCTTTTTTGATACGGGAGAACAATAAAT 40 8[367] 2[360] AATCCGCGCAAAGTACCTAAAACAAACCATCGCTTTTGCG 40 8[399] 2[392] GTAACAGTACAGTTAACCGTCGAGTCGTAAACTTTGCCTG 40 8[431] 2[424] GGTAATAAATTATTCTCGGGGTTTGAGAATAGAGCGTTA 40 10[71] 12[56] AGGCTTATCTACAATTTCTTACCAACGCTAAC 32 10[103] 12[88] TTAGAACCAATATAATCGGAATTATCATCATA 32 10[105] 12[120] TATCAAACTATCTGGTTAGGAGCACTAACAAC 32 10[167] 12[152] AAATCTAAGGACTGGTACCTCATTGAGGAAGG 32 10[167] 12[184] GTACCGAGAAGCTACGGCATTTCACATAAATC 32 10[199] 12[184] GTACCGAGAGCTCCTCATTGAGGAAGTAACC 32 10[231] 12[216] GAAGGGCGGCCTCTTCCACGACACTGAGCTAACC 32 10[263] 12[248] GCCATTCGGGATTTTGAATTAAGTTGGGTAACC 32 10[295] 12[312]	8[207]	2[200]	GAAGCATAGTCGGGAACCAGCTGCCTATTAAACCTTATAA	40
8[303] 2[296] AAGAGGAACGGAAGCAAGAGCTTAACCAAAAACAAATTA 40 8[335] 2[328] TCAGAAGCAGTACCTTTTTTGATACGGGAGAACAATAAAT 40 8[367] 2[360] AATCCGCGCAAAGTACCTAAAACAAACCATCGCTTTTGCG 40 8[399] 2[392] GTAACAGTACAGTTAACCGTCGAGTCGTAAACTTTGCCTG 40 8[431] 2[424] GGTAATAAATTATTCTCGGGGTTTGAGAATAGAGACGTTA 40 10[71] 12[56] AGGCTTATCTACAATTTCTTACCAACGCTAAC 32 10[103] 12[88] TTAGAACCAATATAATCGGAATTATCATCATA 32 10[105] 12[120] TATCAAACTATCTGGTTAGGAGCACTAACAAC 32 10[167] 12[152] AAATCTAAGGACTGGTACCTCATTGAGGAAGG 32 10[167] 12[184] GTACCGAGAAGCTACGGCATTTCACATAAATC 32 10[199] 12[184] GTACCGAGAGCTACGGCATTTCACATAAACC 32 10[231] 12[216] GAAGGGCGCCTCTTCCACGACGTTGTAAAAC 32 10[263] 12[248] GCCATCGGGGATTTAAATTAGGGCATA 32 10[359] 12[344] CAGACCAGTGGCTGACAACAAAGCTGCTCATT 32 10[359] 12[344] CAGACCAG	8[239]	2[232]	GTTTGAGGCGGATTGAATGTGAGCTAAATTAAAGAGAATC	<u>40</u>
8[335] 2[328] TCAGAAGCAGTACCTTTTTTTGATACGGGAGAACAATAAAT 40 8[367] 2[360] AATCCGCGCAAAGTACCTAAAACAAACCATCGCTTTTGCG 40 8[399] 2[392] GTAACAGTACAGTTAACCGTCGAGTCGTAAACTTTGCCTG 40 8[431] 2[424] GGTAATAAATTATTCTCGGGGTTTGAGAATAGAGACGTTA 40 10[71] 12[56] AGGCTTATCTACAATTTCTTACCAACGCTAAC 32 10[103] 12[88] TTAGAACCAATATAATCGGAATTATCATCATA 32 10[135] 12[120] TATCAAACTATCTGGTTAGGAGCACTAACAAC 32 10[167] 12[152] AAATCTAAGGACTGGTACCTCATTGAGGAAGG 32 10[167] 12[184] GTACCGAGAAGCTACGGCATTTCACATAAATC 32 10[199] 12[184] GTACCGAGAGCTACGGCATTTCACATAAAAC 32 10[231] 12[216] GAAGGGCGGCCTCTTCCACGACGTTGTAAAAC 32 10[263] 12[248] GCCATTCGGGGATTTAAGTTGGGTAACG 32 10[295] 12[280] GTCATAAAACCAGACGAGGGAATTACGAGGCATA 32 10[359] 12[344] CAGACCAGTGGCTGACAACAAAGCTGCTCATT 32 10[391] 12[376] CCAACTTT	8[271]	2[264]	TTTATGGGTGTAGTAAGCCTTCCTAGAGATCTTCAGGTCA	40
8[367] 2[360] AATCCGCGCAAAGTACCTAAAACAAACCATCGCTTTTGCG 40 8[399] 2[392] GTAACAGTACAGTTAACCGTCGAGTCGTAAACTTTGCCTG 40 8[431] 2[424] GGTAATAAATTATTCTCGGGGTTTGAGAATAGAGACGTTA 40 10[71] 12[56] AGGCTTATCTACAATTTCTTACCAACGCTAAC 32 10[103] 12[88] TTAGAACCAATATAATCGGAATTATCATCATA 32 10[135] 12[120] TATCAAACTATCTGGTTAGGAGCACTAACAAC 32 10[167] 12[152] AAATCTAAGGACTGGTACCTCATTGAGGAAGG 32 10[199] 12[184] GTACCGAGAAGCTACGGCATTTCACATAAATC 32 10[231] 12[216] GAAGGGCGGCCTCTTCCACGACGTTGTAAAAC 32 10[263] 12[248] GCCATTCGGGGATGTGATTAAGTTGGGTAACG 32 10[295] 12[280] GTCATAAAACCAGACGGGAATTACGAGGCATA 32 10[327] 12[312] TTAGACTGGGCTTTTGCATTCAACTAATGCAG 32 10[391] 12[344] CAGACCAGTGGCTGACAACAAAGCTGCTCATT 32 10[423] 12[408] AGGTCAGAAGAACCCACCGCCGGGATATTCA 32 10[79] 3[79] GATATAGAGTAATAAG	8[303]	2[296]	AAGAGGAACGGAAGCAAGAGCTTAACCAAAAACAAAATTA	40
8[399] 2[392] GTAACAGTACAGTTAACCGTCGAGTCGTAAACTTTGCCTG 40 8[431] 2[424] GGTAATAAATTATTCTCGGGGTTTGAGAATAGAGACGTTA 40 10[71] 12[56] AGGCTTATCTACAATTTCTTACCAACGCTAAC 32 10[103] 12[88] TTAGAACCAATATAATCGGAATTACATCATA 32 10[135] 12[120] TATCAAACTATCTGGTTAGGAGCACTAACAAC 32 10[167] 12[152] AAATCTAAGGACTGGTACCTCATTGAGGAAGG 32 10[199] 12[184] GTACCGAGAAGCTACGGCATTTCACATAAATC 32 10[231] 12[216] GAAGGGCGGCCTCTTCCACGACGTTGTAAAAC 32 10[263] 12[248] GCCATTCGGGGATGTGATTAAGTTGGGTAACG 32 10[295] 12[280] GTCATAAAACCAGACGGGAATTACGAGGCATA 32 10[327] 12[312] TTAGACTGGGCTTTTGCATTCAACTAATGCAG 32 10[359] 12[344] CAGACCAGTGGCTGACAACAAAGCTGCTCATT 32 10[423] 12[408] AGGTCAGAAGAACCCACCGCCGGATATTCA 32 10[79] 3[79] GATATAGAGTAATAAGCAATTTAGGCCTGAAT 32 10[143] 3[143] ACCTCAAAAGAGATTCACCAACATT	8[335]	2[328]	TCAGAAGCAGTACCTTTTTTGATACGGGAGAACAATAAAT	40
8[431] 2[424] GGTAATAAATTATTCTCGGGGTTTGAGAATAGAGACGTTA 40 10[71] 12[56] AGGCTTATCTACAATTTCTTACCAACGCTAAC 32 10[103] 12[88] TTAGAACCAATATAATCGGAATTATCATCATA 32 10[135] 12[120] TATCAAACTATCTGGTTAGGAGCACTAACAAC 32 10[167] 12[152] AAATCTAAGGACTGGTACCTCATTGAGGAAGG 32 10[199] 12[184] GTACCGAGAAGCTACGGCATTTCACATAAATC 32 10[231] 12[216] GAAGGGCGCCTCTTCCACGACGTTGTAAAAC 32 10[231] 12[216] GAAGGGCGCCTCTTCACACGACGTTGTAAAAC 32 10[263] 12[248] GCCATTCGGGGATGTGATTAAGTTGGGTAACG 32 10[295] 12[280] GTCATAAAACCAGACGGGAATTACGAGGCATA 32 10[327] 12[312] TTAGACTGGGCTTTTGCATTCAACTAATGCAG 32 10[359] 12[344] CAGACCAGTGGCTGACAACAAAGCTGCTCATT 32 10[391] 12[376] CCAACTTTGAAGAACCCACCGCCGGATATTCA 32 10[423] 12[408] AGGTCAGAAGAACCGCTTCATAATCAAAATCA 32 10[79] 3[79] GATATAGAGTAATAAGCAATTTAGGCCT	8[367]	2[360]	AATCCGCGCAAAGTACCTAAAACAAACCATCGCTTTTGCG	40
10[71] 12[56] AGGCTTATCTACAATTTCTTACCAACGCTAAC 32 10[103] 12[88] TTAGAACCAATATAATCGGAATTATCATCATA 32 10[135] 12[120] TATCAAACTATCTGGTTAGGAGCACTAACAAC 32 10[167] 12[152] AAATCTAAGGACTGGTACCTCATTGAGGAAGG 32 10[199] 12[184] GTACCGAGAAGCTACGGCATTTCACATAAATC 32 10[231] 12[216] GAAGGGCGGCCTCTTCCACGACGTTGTAAAAC 32 10[263] 12[248] GCCATTCGGGGATGTGATTAAGTTGGGTAACG 32 10[295] 12[280] GTCATAAAACCAGACGGGAATTACGAGGCATA 32 10[327] 12[312] TTAGACTGGGCTTTTGCATTCAACTAATGCAG 32 10[359] 12[344] CAGACCAGTGGCTGACAACAAAGCTGCTCATT 32 10[391] 12[376] CCAACTTTGAAGAACCCACCGCCGGATATTCA 32 10[423] 12[408] AGGTCAGAAGAACCCACCGCCGGATATTCA 32 10[79] 3[79] GATATAGAGTAATAAGCAATTTAGGCCTGAAT 32 10[143] 3[143] ACCTCAAAAGAGATTCACCAACATTTTG 32 10[175] 3[175] TGGTCGAACGTATTGAAAAAAAAAAAAAAAAAAAAAAAA	8[399]	2[392]	GTAACAGTACAGTTAACCGTCGAGTCGTAAACTTTGCCTG	40
10[103] 12[88] TTAGAACCAATATAATCGGAATTATCATCATA 32 10[135] 12[120] TATCAAACTATCTGGTTAGGAGCACTAACAAC 32 10[167] 12[152] AAATCTAAGGACTGGTACCTCATTGAGGAAGG 32 10[199] 12[184] GTACCGAGAAGCTACGGCATTTCACATAAATC 32 10[231] 12[216] GAAGGGCGGCCTCTTCCACGACGTTGTAAAAC 32 10[263] 12[248] GCCATTCGGGGATGTGATTAAGTTGGGTAACG 32 10[295] 12[280] GTCATAAAACCAGACGGGAATTACGAGGCATA 32 10[327] 12[312] TTAGACTGGGCTTTTGCATTCAACTAATGCAG 32 10[359] 12[344] CAGACCAGTGGCTGACAACAAAGCTGCTCATT 32 10[391] 12[376] CCAACTTTGAAGAACCCACCGCCGGGATATTCA 32 10[423] 12[408] AGGTCAGAAGAACCGCTTCATAATCAAAATCA 32 10[19] 3[79] GATATAGAGTAATAAGCAATTTAGGCCTGAAT 32 10[143] 3[143] ACCTCAAAAGAGATAGATTCACCAACATTTTG 32 10[111] 3[111] TGGAAGGGCATTTCAAAAAAAAGAAGAATTACC 32 10[207] 3[207] ATCCCCGGCCAGTGAGGCTGATTGTTTGATGT	8[431]	2[424]	GGTAATAAATTATTCTCGGGGTTTGAGAATAGAGACGTTA	40
10[135] 12[120] TATCAAACTATCTGGTTAGGAGCACTAACAAC 32 10[167] 12[152] AAATCTAAGGACTGGTACCTCATTGAGGAAGG 32 10[199] 12[184] GTACCGAGAAGCTACGGCATTTCACATAAATC 32 10[231] 12[216] GAAGGGCGGCCTCTTCCACGACGTTGTAAAAC 32 10[263] 12[248] GCCATTCGGGGATGTGATTAAGTTGGGTAACG 32 10[295] 12[280] GTCATAAAAACCAGACGGGAATTACGAGGCATA 32 10[327] 12[312] TTAGACTGGGCTTTTGCATTCAACTAATGCAG 32 10[359] 12[344] CAGACCAGTGGCTGACAACAAAGCTGCTCATT 32 10[391] 12[376] CCAACTTTGAAGAACCCACCGCCGGATATTCA 32 10[423] 12[408] AGGTCAGAAGAACCGCTTCATAATCAAAATCA 32 10[79] 3[79] GATATAGAGTAATAAGCAATTTAGGCCTGAAT 32 10[143] 3[143] ACCTCAAAAGGAATAGATTCACCAACATTTTG 32 10[175] 3[175] TGGTCGAACGTATTGGAGTTGCAGACGCTGGT 32 10[207] 3[207] ATCCCCGGCCAGTGAGGCTGATTGTTTGATTGTTTGATGG 32	10[71]	12[56]	AGGCTTATCTACAATTTCTTACCAACGCTAAC	32
10[167] 12[152] AAATCTAAGGACTGGTACCTCATTGAGGAAGG 32 10[199] 12[184] GTACCGAGAAGCTACGGCATTTCACATAAATC 32 10[231] 12[216] GAAGGGCGGCCTCTTCCACGACGTTGTAAAAC 32 10[263] 12[248] GCCATTCGGGGATGTGATTAAGTTGGGTAACG 32 10[295] 12[280] GTCATAAAACCAGACGGGAATTACGAGGCATA 32 10[327] 12[312] TTAGACTGGGCTTTTGCATTCAACTAATGCAG 32 10[359] 12[344] CAGACCAGTGGCTGACAACAAAGCTGCTCATT 32 10[391] 12[376] CCAACTTTGAAGAACCCACCGCCGGATATTCA 32 10[423] 12[408] AGGTCAGAAGAACCGCTTCATAATCAAAATCA 32 10[79] 3[79] GATATAGAGTAATAAGCAATTTAGGCCTGAAT 32 10[143] 3[143] ACCTCAAAAGAGATTCACCAACATTTTG 32 10[175] 3[175] TGGTCGAACGTATTGAAGAGACGCTGGT 32 10[207] 3[207] ATCCCCGGCCAGTGAGGCTGATTGTTTGATGG 32	10[103]	12[88]	TTAGAACCAATATAATCGGAATTATCATCATA	32
10[199] 12[184] GTACCGAGAAGCTACGGCATTTCACATAAATC 32 10[231] 12[216] GAAGGGCGGCCTCTTCCACGACGTTGTAAAAC 32 10[263] 12[248] GCCATTCGGGGGATGTGATTAAGTTGGGTAACG 32 10[295] 12[280] GTCATAAAAACCAGACGGGAATTACGAGGCATA 32 10[327] 12[312] TTAGACTGGGCTTTTGCATTCAACTAATGCAG 32 10[359] 12[344] CAGACCAGTGGCTGACAACAAAGCTGCTCATT 32 10[391] 12[376] CCAACTTTGAAGAACCCACCGCCGGATATTCA 32 10[423] 12[408] AGGTCAGAAGAACCGCTTCATAATCAAAATCA 32 10[79] 3[79] GATATAGAGTAATAAGCAATTTAGGCCTGAAT 32 10[143] 3[143] ACCTCAAAAGAGATAGATTCACCAACATTTTG 32 10[111] 3[111] TGGAAGGGCATTTCAAAAAAGAGAATTACC 32 10[175] 3[175] TGGTCGAACGTATTGGAGTTGCAGACGCTGGT 32 10[207] 3[207] ATCCCCGGCCAGTGAGGCTGATTGTTTGATGG 32	10[135]	12[120]	TATCAAACTATCTGGTTAGGAGCACTAACAAC	32
10[231] 12[216] GAAGGGCGGCCTCTTCCACGACGTTGTAAAAC 32 10[263] 12[248] GCCATTCGGGGATGTGATTAAGTTGGGTAACG 32 10[295] 12[280] GTCATAAAACCAGACGGGAATTACGAGGCATA 32 10[327] 12[312] TTAGACTGGGCTTTTGCATTCAACTAATGCAG 32 10[359] 12[344] CAGACCAGTGGCTGACAACAAAGCTGCTCATT 32 10[391] 12[376] CCAACTTTGAAGAACCCACCGCCGGATATTCA 32 10[423] 12[408] AGGTCAGAAGAACCGCTTCATAATCAAAATCA 32 10[79] 3[79] GATATAGAGTAATAAGCAATTTAGGCCTGAAT 32 10[143] 3[143] ACCTCAAAAGAGATAGATTCACCAACATTTTG 32 10[111] 3[111] TGGAAGGGCATTTCAAAAAAGAAGAAGGAATTACC 32 10[175] 3[175] TGGTCGAACGTATTGGAGTTGCAGACGCTGGT 32 10[207] 3[207] ATCCCCGGCCAGTGAGGCTGATTGTTTGATTGTTTGATGG 32	10[167]	12[152]	AAATCTAAGGACTGGTACCTCATTGAGGAAGG	32
10[263] 12[248] GCCATTCGGGGATGTGATTAAGTTGGGTAACG 32 10[295] 12[280] GTCATAAAACCAGACGGGAATTACGAGGCATA 32 10[327] 12[312] TTAGACTGGGCTTTTGCATTCAACTAATGCAG 32 10[359] 12[344] CAGACCAGTGGCTGACAACAAAGCTGCTCATT 32 10[391] 12[376] CCAACTTTGAAGAACCCACCGCCGGATATTCA 32 10[423] 12[408] AGGTCAGAAGAACCGCTTCATAATCAAAAATCA 32 10[79] 3[79] GATATAGAGTAATAAGCAATTTAGGCCTGAAT 32 10[143] 3[143] ACCTCAAAAGAGATTCACCAACATTTTG 32 10[111] 3[111] TGGAAGGGCATTTCAAAAAAGAAGAAGGAATTACC 32 10[175] 3[175] TGGTCGAACGTATTGGAGTTGCAGACGCTGGT 32 10[207] 3[207] ATCCCCGGCCAGTGAGGCTGATTGTTTGATGG 32	10[199]	12[184]	GTACCGAGAAGCTACGGCATTTCACATAAATC	32
10[295] 12[280] GTCATAAAACCAGACGGGAATTACGAGGCATA 32 10[327] 12[312] TTAGACTGGGCTTTTGCATTCAACTAATGCAG 32 10[359] 12[344] CAGACCAGTGGCTGACAACAAAGCTGCTCATT 32 10[391] 12[376] CCAACTTTGAAGAACCCACCGCCGGATATTCA 32 10[423] 12[408] AGGTCAGAAGAACCGCTTCATAATCAAAATCA 32 10[79] 3[79] GATATAGAGTAATAAGCAATTTAGGCCTGAAT 32 10[143] 3[143] ACCTCAAAAGAGATAGATTCACCAACATTTTG 32 10[111] 3[111] TGGAAGGGCATTTCAAAAAAGGAATTACC 32 10[175] 3[175] TGGTCGAACGTATTGGAGTTGCAGACGCTGGT 32 10[207] 3[207] ATCCCCCGGCCAGTGAGGCTGATTGTTTGATGG 32	10[231]	12[216]	GAAGGCCGCCTCTTCCACGACGTTGTAAAAC	32
10[327] 12[312] TTAGACTGGGCTTTTGCATTCAACTAATGCAG 32 10[359] 12[344] CAGACCAGTGGCTGACAACAAAGCTGCTCATT 32 10[391] 12[376] CCAACTTTGAAGAACCCACCGCCGGATATTCA 32 10[423] 12[408] AGGTCAGAAGAACCGCTTCATAATCAAAAATCA 32 10[79] 3[79] GATATAGAGTAATAAGCAATTTAGGCCTGAAT 32 10[143] 3[143] ACCTCAAAAAGAGATTCACCAACATTTTG 32 10[111] 3[111] TGGAAGGGCATTTCAAAAAAGAAGAATTACC 32 10[175] 3[175] TGGTCGAACGTATTGGAGTTGCAGACGCTGGT 32 10[207] 3[207] ATCCCCGGCCAGTGAGGCTGATTGTTTGATGG 32	10[263]	<u>12[248]</u>	GCCATTCGGGGATGTGATTAAGTTGGGTAACG	<u>32</u>
10[359] 12[344] CAGACCAGTGGCTGACAACAAAGCTGCTCATT 32 10[391] 12[376] CCAACTTTGAAGAACCCACCGCCGGATATTCA 32 10[423] 12[408] AGGTCAGAAGAACCGCTTCATAATCAAAATCA 32 10[79] 3[79] GATATAGAGTAATAAGCAATTTAGGCCTGAAT 32 10[143] 3[143] ACCTCAAAAAGAGATTCACCAACATTTTG 32 10[111] 3[111] TGGAAGGGCATTTCAAAAAAGAAGAATTACC 32 10[175] 3[175] TGGTCGAACGTATTGGAGTTGCAGACGCTGGT 32 10[207] 3[207] ATCCCCGGCCAGTGAGGCTGATTGTTTGATGG 32	10[295]	12[280]	GTCATAAAACCAGACGGGAATTACGAGGCATA	32
10[391] 12[376] CCAACTTTGAAGAACCCACCGCCGGATATTCA 32 10[423] 12[408] AGGTCAGAAGAACCGCTTCATAATCAAAATCA 32 10[79] 3[79] GATATAGAGTAATAAGCAATTTAGGCCTGAAT 32 10[143] 3[143] ACCTCAAAAAGAGATAGATTCACCAACATTTTG 32 10[111] 3[111] TGGAAGGGCATTTCAAAAAAGAAGAATTACC 32 10[175] 3[175] TGGTCGAACGTATTGGAGTTGCAGACGCTGGT 32 10[207] 3[207] ATCCCCGGCCAGTGAGGCTGATTGTTTGATGG 32	10[327]	12[312]	TTAGACTGGGCTTTTGCATTCAACTAATGCAG	32
10[423] 12[408] AGGTCAGAAGAACCGCTTCATAATCAAAATCA 32 10[79] 3[79] GATATAGAGTAATAAGCAATTTAGGCCTGAAT 32 10[143] 3[143] ACCTCAAAAAGAGATAGATTCACCAACATTTTG 32 10[111] 3[111] TGGAAGGGCATTTCAAAAAAGAAGGAATTACC 32 10[175] 3[175] TGGTCGAACGTATTGGAGTTGCAGACGCTGGT 32 10[207] 3[207] ATCCCCGGCCAGTGAGGCTGATTGTTTGATGG 32	10[359]	12[344]	CAGACCAGTGGCTGACAACAAAGCTGCTCATT	32
10[79] 3[79] GATATAGAGTAATAAGCAATTTAGGCCTGAAT 32 10[143] 3[143] ACCTCAAAAAGAGATAGATTCACCAACATTTTG 32 10[111] 3[111] TGGAAGGGCATTTCAAAAAAGAAGGAATTACC 32 10[175] 3[175] TGGTCGAACGTATTGGAGTTGCAGACGCTGGT 32 10[207] 3[207] ATCCCCGGCCAGTGAGGCTGATTGTTTGATGG 32	10[391]	12[376]	CCAACTTTGAAGAACCCACCGCCGGATATTCA	32
10[143] 3[143] ACCTCAAAAGAGATAGATTCACCAACATTTTG 32 10[111] 3[111] TGGAAGGGCATTTCAAAAAAGAAGGAATTACC 32 10[175] 3[175] TGGTCGAACGTATTGGAGTTGCAGACGCTGGT 32 10[207] 3[207] ATCCCCGGCCAGTGAGGCTGATTGTTTGATGG 32	10[423]	12[408]	AGGTCAGAAGAACCGCTTCATAATCAAAATCA	32
10[111] 3[111] TGGAAGGGCATTTCAAAAAAAGAAGGAATTACC 32 10[175] 3[175] TGGTCGAACGTATTGGAGTTGCAGACGCTGGT 32 10[207] 3[207] ATCCCCGGCCAGTGAGGCTGATTGTTTGATGG 32	10[79]	3[79]	GATATAGAGTAATAAGCAATTTAGGCCTGAAT	32
10[175]3[175]TGGTCGAACGTATTGGAGTTGCAGACGCTGGT3210[207]3[207]ATCCCCGGCCAGTGAGGCTGATTGTTTGATGG32	10[143]	3[143]	ACCTCAAAAGAGATAGATTCACCAACATTTTG	32
10[207] 3[207] ATCCCCGGCCAGTGAGGCTGATTGTTTGATGG 32	10[111]	3[111]	TGGAAGGCATTTCAAAAAAGAAGGAATTACC	32
	10[175]	3[175]	TGGTCGAACGTATTGGAGTTGCAGACGCTGGT	32
10[239] 3[239] ACTGTTGGTTTTTGTTATATTTAATGTCAATC 32	10[207]	3[207]	ATCCCCGGCCAGTGAGGCTGATTGTTTGATGG	32
	10[239]	3[239]	<u>ACTGTTGGTTTTTGTTATATTTAATGTCAATC</u>	<u>32</u>

10 271 3 271 GGCAAAGCAGGAAACCCCAAAAAGTGG 32 10 335 3 335 GCGGAATCACATGTTTTAGATTTATCATTTGG 32 10 335 3 335 TAAAATGTTCTGGAAGTATAACAGAATTCTAC 32 10 335 3 335 TAAAATGTTCTGGAAGTATAACAGAATTCTAC 32 10 339 3 399 TCACATGAGATATAAGCCCAAATGACCGTAAC 32 10 431 3 431 GTTGAGGCCGTACTCAGAGCCACCCTACAACG 32 11 80 1 87 ATGATGGCCAAGAAAAAGCATATACCTACTTTAGAAATGC 40 11 112 1 119 TTTGGATTTAATGAGCTTACCAAGCAGTACATATTTTCC 40 11 1141 1 151 AAATCAACATTGGCAGAACCCTCCCGCCAGCAGAACTCA 40 11 120 1 183 TGAGTAAACCTGGAGAGCCCCCCCCCCCCCCCCCCCCCC			-	
10 335 3 335 TAAAATGTTCTGGAAGTATAACAGAATTCTAC 32 10 367 3 367 ACGGTGTAAATGCCACAAAGACTTCAGCATCG 32 10 399 3 399 TCACATGAGAATATAAGCCCAATAGACCGTAAC 32 10 431 3 431 GTTGAGGCCGTACTCAGAGCCCACTACAACG 32 11 80 1 87 ATGATGGCCAAGAAAAAGCATTACCTACATTTAGAAATGC 40 11 112 1 119 TTTGGATTTAATGAGCTTACCAAGCAGTACATAATTTTCC 40 11 1141 11 51 AAATCAACATTGGCAGAACCCTTCCCGCCAGCAGAACTCA 40 11 1161 11 119 TTTGGATTTAATGAGCTTACCAAGCAGTACATAATTTTCC 40 11 1176 1 1183 TGAGTAAACCTGAGAGGCGCCCAGGGAGATAGGGTTCCAGT 40 11 208 1 215 GTTACCTCTTTCAACAACGGGTGCCAAGCAACTGCAGGAG 40 11 211 ACCCAACACGAGCAGCAACATACGAACTGCGGAG 40 11 272 1 279 ATCATAACCATTTCGCCATCAAAAAGCGGCTAACAAAATA 40 11 304 1 311 AACCAAAACGAACGAGTAAAATATAGAGAATTAGCATTATGA 40 11 336 1 343 GTTTTGCCCCCATCCAATTTCATTATTAACATCGCTTTAT 40 11 368 1 375 AGAGTAATTGAGGACTTACGAAGGAGCCCAACAAAATA 40 11 368 1 375 AGAGTAATTGAGGACTTACGAAGGAAGCCCTTTCATTTAACATTGCCTTTTA 40 11 432 1 439 GAGCCACCCCACTCCATTCCATTTCATTTTATACATTGCCTTTTA 40 11 432 1 439 GAGCCACCCCCACCCCTCAGGAGGTTTACTCTTTCTATATTTACATTGCATTTCAAGGAAC 40 12 55 9 55 GAGCGTCTTTGTTTAACTAAGCAAATT 32 12 19 9 119 TAACCACAGAAATGAGAAATCAAAGCAAAT 32 12 19 9 119 TAACCACCAGAAATAGCAGAAATCAAAGCAAAT 32 12 19 9 119 TAACCACCAGAAATAGCTGAAGAAATCAAAGCAAAT 32 12 19 9 279 GTAAGAGCATCACGCCCCCCCCAGCGAGGATTCCCACCCCCAGCCCCCAGCCCCCCAGCCCCCAGCCCCCAGCCCCCC	10[271]	3[271]	GGCAAAGCAGGAACGCAAAACCCCAAAAAGTGG	32
10 367 3 367 ACGGTGTAAATGCCACAAAGACTTCAGCATCG 32 10 399 3 399 TACAATGAGACTATAAGCCCAATAGACCGTAAC 32 11 80 1 87 ATGATGGCCAGCATCAGAGCCACCCTACAACG 32 11 80 1 87 ATGATGGCCAAGAAAAAGAATATACCTACTTTAGAAATGC 40 11 112 1 119 TTTGGATTTATAGGCCTAACCAGCAGCAGCACACATAATTTTCC 40 11 144 1 151 AAATCAACATTGGCAGAACCCTTCCAGCAGCAGACTCA 40 11 144 1 151 AAATCAACATTGGCAGAACCCTTCCCGCCAGCAGCACTCA 40 11 208 1 215 GTTACCTCTTTCAACAACGGGTGCAAAATCAGACTGG 40 11 240 1 247 GCCAGCTGATAAGCAAAAATCAGCAGCAAAAATGAGCAGAACTGCAGAGA 11 279 ATCATAACCATTTCGCCATCAAAAAGCAGCAAAAAT 40 11 304 1 311 AACCAAAACGAGAGAAAAATCAGCAGCAAAAATA 40 11 304 1 311 AACCAAAACGAGAGAAAAATTAGAACATTAGCATTAATGA 40 11 308 1 335 AGAGTAATTAGAGAAAAATTAGAAACGAGCCCCCCCCTTAAT 40 11 308 1 375 AGAGTAATTAGAGAATTAAGAAAGGAGCCCCCCCCCCAGGAGAACTTTCA 40 11 400 1 407 CAGAGCCGATCAAAGAAGAAGGAGTAAGAAGGAGCCCCCCCC	10[303]	3[303]	GCGGAATCACATGTTTTAGATTTATCATTTGG	32
10 399 3 399 TCACATGAGATATAAGCCCAATAGACCGTAAC 32	10[335]	3[335]	TAAAATGTTCTGGAAGTATAACAGAATTCTAC	32
10 431 3 431 GTTGAGGCCGTACTCAGAGCCACCCTACACG 32 11 80 11 87 ATGATGGCCAAGAAAAAGAATATACCTACTTTAGAAATGC 40 11 112 11 119 TTTGGATTTAATGAGCTTACCAAGCAGTACATAATTTTCC 40 11 1141 11 151 AAATCAACATTGGCCAAGCAGACACCCAGCAGAACTCA 40 11 176 11 183 TGAGTAAACCTGAGAGGAGCCCAGGGAGATAGGTTCCAGT 40 11 208 11 215 GTTACCTCTTTCAACAACGGGGTGTGCAAAATCGAACGTGG 40 11 208 11 240 11 247 GCCAGCTGATAAGCAAAAATCACAACGGGGTGTGCAAAATCGAACGGGA 40 11 279 ATCATAACCATTTCGCCATCAAAAAAGCGGCTAACAAAATA 40 11 304 11 311 AACCAAAACGAACGAGTAAATATGAGAATTAGCATTATGA 40 11 304 11 311 AACCAAAACGAACGAGTAAAATATGAGAATTAGCATTATGA 40 11 305 13 305 13 305 13 305 13 305 AGAGTAATTGAGGAGCTTACAAAATAAGCAGCCCCCCCCC	10[367]	3[367]	ACGGTGTAAATGCCACAAAGACTTCAGCATCG	32
11[80] 1[87] ATGATGGCCAAGAAAAGAATATACCTACTTTAGAAATGC 40 11[112] 1[119] TTTGGATTTAATGAGCTTACCAAGCAGTACATAATTTTCC 40 11[144] 1[151] AAATCAACATTGGCAGAACCCTTCCCGCCAGCAGAACTCA 40 11[176] 1[183] TGAGTAAACCTGGCAGAACCCTTCCCGCCAGCAGAACTCA 40 11[176] 1[183] TGAGTAAACCTGAGAGCGCCCCAGGGAGATAGGGTTCCAGT 40 11[208] 1[215] GTTACCTCTTTCAACAACGGGTGTGCAAAATCGAACGTGG 40 11[240] 1[247] GCCAGCTGATAAGCAAAAATAAGCAGGCAAACATGCCGGAG 40 11[272] 1[279] ATCATAACCATTCGCCATCAAAAAGCGGCTAACAAAATA 40 11[304] 1[311] AACCAAAACGAACGAGTAAAATATGAGAATTAGCAATTATGA 40 11[336] 1[343] GTTTTGCCCCATTCATTTCATTATAACATCGCCTTTAT 40 11[386] 1[375] AGAGTAATTGAGGACTTACGAAGGAAAGCCCCCCCCCCC	10[399]	3[399]	TCACATGAGATATAAGCCCAATAGACCGTAAC	32
11 112 1 119 TTTGGATTTAATGAGCTTACCAAGCAGTACATAATTTTCC	10[431]	3[431]	GTTGAGGCCGTACTCAGAGCCACCCTACAACG	32
11 144 1 151 AAATCAACATTGGCAGAACCCTTCCCGCCAGCAGAACTCA 40 11 176 1 183 TGAGTAAACCTGAGAGGCGCCAGGGAGATAGGGTTCCAGT 40 11 208 1 215 GTTACCTCTTCAACAACGGGTGTGCAAAATCGAACCTGG 40 11 240 1 247 GCCAGCTGATAAGCAACACAGGTGGCAAAAATCAGCAGAACATGCGCGAG 40 11 272 1 279 ATCATAACCATTTCGCCATCAAAAAGCGAGCAAACATGCCGGAG 40 11 304 1 311 AACCAAAACGAACGAGTAAATATGAGAATTAGCATTATGA 40 11 336 1 343 GTTTTGCCCCATTCCATTTCATTATTAACATCGCCTTTAT 40 11 368 1 375 AGAGTAATTGAGACATTCAGTATAGAAGGACCTTCCATTTCATTATTAACATCGCCTTTCA 40 11 400 1 407 CAGAGCCGATAGCAAGTATAGCCCTATGGGATAACTTTCA 40 11 432 1 439 GAGCCACCCACCCTCAGGAGGTTTGTCTTTCCAAAGGAAC 40 12 55 9 55 GAGCGTCTTTGTTTAACATAGCACTATGA 32 12 187 9 87 TTCCTGATTTACAGAGCAAAATCAAAGCAAAT 32 12 187 9 87 TTCCTGATTTACAGAGCAAAATCAAAGCAAAT 32 12 181 9 191 TAACCACCAGAAATAGCTGATAAAAGCAAATG 32 12 183 9 183 ATTTCTCGAATGAGCATGGATGCCACG 32 12 183 9 183 ATTTCTCGAATGAGCAACTGATTCCAC 32 12 247 9 247 CCAGGGTTGCCAGGGAGGATTCCAC 32 12 247 9 247 CCAGGGTTGCCAGGGAGGATTCCAC 32 12 247 9 247 CCAGGGTTGCCAGGGAGGATTCCAC 32 12 243 9 343 CAGTTAAGGACTGGCGGACGGACCCCACCCCACCCCACC	11[80]	1[87]	ATGATGGCCAAGAAAAAGAATATACCTACTTTAGAAATGC	40
11 176 1 183 TGAGTAAACCTGAGAGGCGCCAGGGAGATAGGGTTCCAGT 40 11 208 1 215 GTTACCTCTTTCAACAACGGGTGTGCAAAATCGAACGTGG 40 11 240 1 247 GCCAGCTGATAAGCAAAAATCAGCAGACAGG 40 11 272 1 279 ATCATAACCATTCGCCATCAAAAATCAGCAGAAAATA 40 11 304 1 311 AACCAAAACGAACGAGTAAATATGAGAATTAGCATTATGA 40 11 336 1 343 GTTTTGCCCCATTCCATTCATTATTAACATCGCCTTAT 40 11 368 1 375 AGAGTAATTGAGAGACTTACGAAGGAGAAGGCCCCCACGCA 40 11 400 1 407 CAGAGCCGATAGCAAGTATAGACCCTATGGGATAACTTCCA 40 11 432 1 439 GAGCCACCCACCCTCAGGAGGTTTGTCTTTCCAAAGGAAC 40 12 55 9 55 GAGCGTTTTTATACTAAGAACTCATCATA 32 12 87 9 87 TTCCTGATTTACAGAGCAAATCAAACCAAAT 32 12 19 9 119 TAACCACCAGAAATAGCTGAATAAAGCAAAT 32 12 151 9 151 TTATCTAAATTTGAGGACTGAATAAAGCAAAT 32 12 151 9 151 TAATCTAAATTTGAGGACTGAATAAAGCAAAT 32 12 215 9 215 GACTGAATGACTGATATGCTGAGTGCCACG 32 12 27 9 279 GTAAGAGCATATCGCCTGAGTGGCCACG 32 12 27 9 279 GTAAGAGCATTCATCAGAGCACGGAGGATTCCACA 32 12 247 9 247 CCAGGGTTGCCAGGGTGCTGCGCACTCCACCC 32 12 231 9 311 ATACATAACAACATTACCAATACTGAAAACGA 32 12 319 9 311 ATACATAACAACATTACCAATACTGAAAACGA 32 12 375 9 375 TTACCCAAACCAGAACAGTAATCATGGTCTTTAC 32 12 372 9 407 CCGGAACCTAGCGACACTGATCATGCAACCGGTC 32 12 407 9 407 CCGGAACCTAGCGACACTGATCATGCAACCGGTC 32 12 407 9 407 CCGGAACCTAGCGACACTTGATATATAAATCC 32 12 407 9 407 CCGGAACCTAGCGACACTTGATATATAAATCC 32 13 168 11 175 TGCCATCTGAATCTGAATTATCCAG 24 13 168 11 175 TGCCATCTGAACTCTGAGTGTTTC 24 13 168 11 175 TGCCATCTGAACTCTGTGTGTTAC 24 13 29 11 39 CAGGAGAACACGAGACACTTGATTATCCAG 24 13 264 11 27 GGTTGGAACACACAGACCTGATCC 24 13 264 11 27 GGTTGGAACACCACCGGACCTTATCC 24 13 264 11 27 GGTTGGAACACACACACACACACACACACACACACACACA	11[112]	1[119]	TTTGGATTTAATGAGCTTACCAAGCAGTACATAATTTTCC	40
11 208 1 215 GTTACCTCTTTCAACAACGGGTGTGCAAAATCGAACGTGG 40 11 240 1 247 GCCAGCTGATAAGCAAAAATCAGCAGCAAACATGCCGGAG 40 11 272 1 279 ATCATAACCATTTCGCCATCAAAAAAGCGGCTAACAAAATA 40 11 304 1 311 AACCAAAACGAACGAGTAAATTAGAAATTAGAATTAGCATTATGA 40 11 336 1 343 GTTTTGCCCCATTCCATTTCATTATTAACATCGCCTTAAT 40 11 368 1 375 AGAGTAATTGAGGACTTACGAAGGAAAGGCCGCCCACGCA 40 11 400 1 407 CAGAGCCGATAGCAAGATAAGCCCTATGGGATAACTTTCA 40 11 432 1 439 GAGCCACCCACCCTCAGGAGGATTAGCCCTATGGGATAACTTTCA 40 11 432 1 439 GAGCCACCCACCCTCAGGAGGTTTGTCTTTCCAAAGGAAC 40 12 55 9 55 GAGCGTCTTTGTTAACTAAGAACTCATCGTA 32 12 187 9 87 TTCCTGATTTACAGAGCAAAATCAAAGCAAAT 32 12 19 9 119 TAACCACCAGAAATAGCTGAATAAAGAAATTG 32 12 151 9 151 TTATCTAAATTTGAGGCTTGCTGAGTGCCACG 32 12 183 9 183 ATTTCTCCGTAAGCAAACGTAATCATGTTTCCT 32 12 215 9 215 GACTGAATGGCCTGGCGACGGAGGATTCCACA 32 12 247 9 247 CCAGGGTTGCCAGGGTGCCACG 32 12 247 9 247 CCAGGGTTGCCAGGGTGCCACGCACCCCC 32 12 311 9 311 ATACATAACAACATTACCAATACTGAAAACCA 32 12 331 9 313 ATACATAACAACATTACCAATACTGAAAACCA 32 12 375 9 375 TTACCCAAACCAGAACCACGGATCC 32 12 375 9 375 TTACCCAAACCAGAACCAGAATGATTTTAC 32 12 375 9 375 TTACCCAAACCAGAACACATACATGATACAACGGTC 32 12 301 11 111 CGGAACCAAGAATGATTACCAATACTGAAAACCA 32 13 36 11 143 GATAATACAACTTCTCAGTTGGC 24 13 168 11 175 TGCCATCTGAACCAGGACCTGATTG 24 13 168 11 175 TGCCATCTGAACCAGAACTCTTGTGCCTGTGCCACCCCCCCC	11[144]	1[151]	AAATCAACATTGGCAGAACCCTTCCCGCCAGCAGAACTCA	40
11 240 1 247 GCCAGCTGATAAGCAAAAATCAGCAGCAAACATGCCGGAG 40 11 272 1 279 ATCATAACCATTTCGCCATCAAAAAGCGGCTAACAAAATA 40 11 304 1 311 AACCAAAACGAACGAGTAAATATGAGAATTAGCATTATGA 40 11 336 1 343 GTTTTGCCCCATTCATTATTAACATCGCCTTAT 40 11 368 1 375 AGAGTAATTGAGGACTTACGAAGGAAAGGCCGCCCACGCA 40 11 400 1 407 CAGAGCCGATAGCAAGTATAGCCCTATGGGATAACTTTCA 40 11 432 1 439 GAGCCACCCACCCTCAGGAGGTTTGTCTTTCCAAAGGAAC 40 12 55 9 55 GAGCGTCTTTGTTTACAGAGGAGTTTGTCTTTCCAAAGGAAC 40 12 55 9 55 GAGCGTCTTTGTTTACAGAGCAAAATCATCGTA 32 12 87 9 87 TTCCTGATTTACAGAGCAAAATCAAAGCAAAT 32 12 19 9 119 TAACCACCAGAAATAGCTGAATAAAGAAATTG 32 12 151 9 151 TTATCTAAATTTGAGGCTTGCTGAGTGCCACG 32 12 183 9 183 ATTCCCGTAAGCAACGTAATCATGTTTCCT 32 12 247 9 247 CCAGGGTTGCCGGACGGAGGATTCCACA 32 12 247 9 247 CCAGGGTTGCCAGGCAGAAACCACCGGATCC 32 12 247 9 247 CCAGGGTTGCCAGGCTGCCACCCCACCCC 32 12 311 9 311 ATACATAACAACATTACCAATACTGAAACCA 32 12 311 9 311 ATACATAACAACATTACCAATACTGAAACCACCGGATCC 32 12 407 9 407 CCGGAACCTAGCGACCTGAGCACCTGAACCCCGGATCC 32 12 407 9 407 CCGGAACCTAGCGACACTTGATATATAAACCC 32 13 104 11 111 CGGAACAAAGAACACCTGGATTGC 24 13 136 11 143 GATAATACAACATTCTTCAGTTGCC 24 13 168 11 175 TGCCATCGAACCTGGTGTGCCCCCCCCCCCCCCCCCCCC	11[176]	1[183]	TGAGTAAACCTGAGAGGCGCCAGGGAGATAGGGTTCCAGT	40
11 272 1 279 ATCATAACCATTTCGCCATCAAAAAGCGGCTAACAAAATA 40 11 304 1 311 AACCAAAACGAACGAGTAAATATGAGAATTAGCATTATGA 40 11 336 1 343 GTTTTGCCCCATTCCATTTCATTATTAACATCGCCTTTAT 40 11 368 1 375 AGAGTAATTGAGGACTTACGAAGGAAGGCCGCCCACGCA 40 11 400 1 407 CAGAGCCGATAGCAAGTATAGCCCTATGGGATAACTTTCA 40 11 432 1 439 GAGCCACCACCCTCAGGAGGTTTGTCTTTCCAAAGGAAC 40 12 55 9 55 GAGCGTCTTTGTTTAACTAAGACTCATCGTA 32 12 87 9 87 TTCCTGATTTACAGAGCAAAATCAAAGCAAAT 32 12 19 9 119 TAACCACCAGAAATAGCTGAATAAAGAAATTG 32 12 151 9 151 TTATCTAAATTTGAGGCTTGCTGAGTGCCACG 32 12 183 9 183 ATTTCTCCGTAAGCAACGTAATCATGTTTCCT 32 12 215 9 215 GACTGAATGGCCTGGCGACGGAGGATTCCACA 32 12 247 9 247 CCAGGGTTGCCAGGGTGCTGCGCACTCCAGCC 32 12 279 9 279 GTAAGAGCATTCATGCGAAAACCACCGGATCC 32 12 343 9 343 CAGTTTAGTGAGATGAGTAATAGTCTTTAC 32 12 343 9 343 CAGTTAGTGAGAACACATACTAGGAAACCACCGGATCC 32 12 375 9 375 TTACCCAAACCAGAACACATACTGAAAACCA 32 12 372 11 79 AGCAGCCTTACTGAATAGGACATTCATG 24 13 136 11 143 GATAATACAACATTCTCAGTATATACAATCCAGT 24 13 200 11 207 AATATAGGAGATCATTCTGGTAATACCAATCCAGACCCTGC 24 13 200 11 207 AATATAGGACGTCTTTCC 24 13 201 11 303 TAACGAAACACATTCTCAGTGTGTAA 24 13 206 11 303 TAACGGAACACCACAAACACATTACCAATACCAACCACTATACCAACCACTATCTCACTACCAACCACTACCACC	11[208]	1[215]	GTTACCTCTTTCAACAACGGGTGTGCAAAATCGAACGTGG	40
11 304 1 311 AACCAAAACGAACGAGTAAATATGAGAATTAGCATTATGA 40 11 336 1 343 GTTTTGCCCCATTCATTTCATTATTAACATCGCCTTTAT 40 11 368 1 375 AGAGTAATTGAGGACTTACGAAGGAAAGGCCGCCCACGCA 40 11 400 1 407 CAGAGCCGATAGCAAGTATAGCCCTATGGGATAACTTTCA 40 11 432 1 439 GAGCCACCCCCCCCCCCCCAGGAGGTTTGCTTTCCAAAGGAAC 40 12 55 9 55 GAGCGTCTTTGTTTAACTAAGAACTCATCGTA 32 12 87 9 87 TTCCTGATTTACAGAGCAAAATCAAAGCAAAT 32 12 19 9 119 TAACCACCAGAAATAGCTGAATAAAGAAATTG 32 12 119 9 119 TAACCACCAGAAATTGAGGCTGCTGAGTGCCACG 32 12 183 9 183 ATTTCTCCGTAAGCAACGTAATCATGTTTCCT 32 12 215 9 215 GACTGAATGACGTGAGACGAAGGATCCACA 32 12 247 9 247 CCAGGGTTGCCAGGGAGGAGGATCCACA 32 12 279 9 279 GTAAGAGCATTCATGCGAAACCACCGGATCC 32 12 311 9 311 ATACATAACAACATTACCAATACTGAAAACGA 32 12 343 9 343 CAGTTTAGTGAGATGAGGTATCATGTTTCT 32 12 375 9 375 TTACCCAAACCAGAACACAGTAATAGGTCTTTAC 32 12 372 11 79 AGCAGCCTTAGCGAACACAGTAATAGTTTTAC 32 12 372 11 79 AGCAGCCTTATCTGAATACCAATACTTTACCAATACCTACC	11[240]	1[247]	GCCAGCTGATAAGCAAAAATCAGCAGCAAACATGCCGGAG	<u>40</u>
11 336 1 343 GTTTTGCCCCATTCCATTTCATTATTAACATCGCCTTTAT	11[272]	1[279]	ATCATAACCATTTCGCCATCAAAAAGCGGCTAACAAAATA	40
11 368 1 375 AGAGTAATTGAGGACTTACGAAGGAAAGGCCGCCCACGCA	11[304]	1[311]	AACCAAAACGAACGAGTAAATATGAGAATTAGCATTATGA	40
11 1400 1 1407 CAGAGCCGATAGCAAGTATAGCCCTATGGGATAACTTTCA 40 11 1432 1 1439 GAGCCACCCACCCTCAGGAGGTTTGTCTTTCCAAAGGAAC 40 12 1551 9 155 GAGCGTCTTTGTTTAACTAAGAACTCATCGTA 32 12 1877 9 87] TTCCTGATTTACAGAGCAAAATCAAAGCAAAT 32 12 19 9 19 TAACCACCAGAAATAGCTGAATAAAGAAATTG 32 12 151 9 151 TTATCTAAATTTGAGGCTTGCTGAGTGCCACG 32 12 183 9 183 ATTTCTCCGTAAGCAACGTAATCATGTTTCCT 32 12 151 9 151 GACTGAATGACCACGAGAGGAGGATTCCACA 32 12 12 152 9 215 GACTGAATGGCCTGGCGACGGAGGAGTCCCACA 32 12 247 9 247 CCAGGGTTGCCAGGGTGCTGCGCACTCCAGCC 32 12 279 9 279 GTAAGAGCATCATGCGAAAACCACCGGATCC 32 12 311 9 311 ATACATAACAACATTACCAATACTGAAAACGA 32 12 343 9 343 CAGTTTAGTGAGATGAGGTAATAGGTCTTTAC 32 12 375 9 375 TTACCCAAACCAGAACACAGAGAGAGAGAGGTC 32 12 407 9 407 CCGGAACCTAGCGACCTTGATATATAAATCC 32 13 11 11 CGGAACCAGAACAGGACCTTGATTGCAGTTG 24 13 13 11 11 CGGAACAAAGAAGAGGACCTGATTG 24 13 11 11 11 11 11 11 1	11[336]	1[343]	GTTTTGCCCCATTCCATTTCATTATTAACATCGCCTTTAT	40
11[432] 1[439] GAGCCACCCACCCTCAGGAGGTTTGTCTTTCCAAAGGAAC 40 12[55] 9[55] GAGCGTCTTTGTTTAACTAAGAACTCATCGTA 32 12[87] 9[87] TTCCTGATTTACAGAGCAAAATCAAAGCAAAT 32 12[119] 9[119] TAACCACCAGAAATAGCTGAATAAAGAAATTG 32 12[151] 9[151] TTATCTAAATTTGAGGCTTGCTGAGTGCCACG 32 12[183] 9[183] ATTTCTCCGTAAGCAACGTAATCATGTTTCCT 32 12[215] 9[215] GACTGAATGGCCTGCGGACGGAGGATTCCACA 32 12[247] 9[247] CCAGGGTTGCCAGGGAGGATTCCACA 32 12[279] 9[279] GTAAGAGCATTCATGCGAAAACCACCGGATCC 32 12[279] 9[279] GTAAGAGCATTCATGCGAAAACCACCGGATCC 32 12[311] 9[311] ATACATAACAACATTACCAATACTGAAAACGA 32 12[343] 9[343] CAGTTTAGTGGAGATGAGGTAATAGGTCTTTAC 32 12[375] 9[375] TTACCCAAACCAGAACAATATACCAATAATACAACGTC 32 12[407] 9[407] CCGGAACCTAGCGACACTTGATATATAAAATCC 32 13[72] 11[79] AGCAGCCTTATCTGAATTATCCAG 24 13[104] 11[111] CGGAACAAAGAAGAGGAGCCTGATTG 24 13[136] 11[143] GATAATACAATACTTCAGTTGGC 24 13[200] 11[207] AATATAGGAGGCTTGATTACC 24 13[292] 11[239] CAGGAGAATCCCAGTGCTATTACC 24 13[28] 11[239] CAGGAACATACCACACACACACACACACACACACACACAC	11[368]		AGAGTAATTGAGGACTTACGAAGGAAAGGCCGCCCACGCA	40
12[55] 9[55] GAGCGTCTTTGTTTAACTAAGAACTCATCGTA 32 12[87] 9[87] TTCCTGATTTACAGAGCAAAATCAAAGCAAAT 32 12[119] 9[119] TAACCACCAGAAATAGCTGAATAAAGAAATTG 32 12[151] 9[151] TTATCTAAATTTGAGGCTTGCTGAGTGCCACG 32 12[183] 9[183] ATTTCTCCGTAAGCAACGTAATCATGTTTCCT 32 12[215] 9[215] GACTGAATGGCCTGGCGACGGAGGATTCCACA 32 12[247] 9[247] CCAGGGTTGCCAGGGTGCTGCGCACTCCAGCC 32 12[279] 9[279] GTAAGAGCATTCATGCGAAAACCACGGATCC 32 12[311] 9[311] ATACATAACAACATTACCAATACTGAAAACGA 32 12[343] 9[343] CAGTTTAGTGAGATGAGGTAATAGGTCTTTAC 32 12[375] 9[375] TTACCCAAACCAGAACAGAATGAGGTCTTTAC 32 12[407] 9[407] CCGGAACCTAGCGACACTTGATATATAAAATCC 32 13[72] 11[79] AGCAGCCTTATCTGAATTATCCAG 24 13[104] 11[111] CGGAACAAAGAAGAGCCTGATTG 24 13[168] 11[1207] AATATAGGGGGCTGGCTGCTT 24	11[400]	1[407]	CAGAGCCGATAGCAAGTATAGCCCTATGGGATAACTTTCA	40
12[87] 9[87] TTCCTGATTTACAGAGCAAAATCAAAGCAAAT 32 12[119] 9[119] TAACCACCAGAAATAGCTGAATAAAGAAATTG 32 12[151] 9[151] TTATCTAAATTTGAGGCTTGCTGAGTGCCACG 32 12[183] 9[183] ATTTCTCCGTAAGCAACGTAATCATGTTTCCT 32 12[215] 9[215] GACTGAATGGCCTGGCGACGGAGGATTCCACA 32 12[247] 9[247] CCAGGGTTGCCAGGTGCCACTCCAGCC 32 12[279] 9[279] GTAAGAGCATTCATGCGAAAACCACCGGATCC 32 12[311] 9[311] ATACATAACAACATTACCAATACTGAAAACGA 32 12[343] 9[343] CAGTTTAGTGAGATGAGGATGAATAGGTCTTTAC 32 12[375] 9[375] TTACCCAAACCAGAACACAGATGAAGACGGTC 32 12[407] 9[407] CCGGAACCTAGCGACACTTGATATATAAATCC 32 13[72] 11[79] AGCAGCCTATCTGAATTATCCAG 24 13[104] 11[111] CGGAACAAGAAGAAGAGACGGTTG 24 13[188] 11[143] GATAATACAATCTTCAGTTGGC 24 13[20] 11[207] AATATAGGCGGCTGACTGTTTACC 24 13[28] 11[271] GGTTGTGAAACAGGTGCTATTACC 24 13[28] 11[35] TCATCAGTGAACCCAGAACACAAAAGAA 24 13[28] 11[335] TCATCAGTGAACACCAGAACACAAAAACACACCACACCTAGTATACC 24 13[296] 11[303] TAACGGAACGCCAAAAACACACCACACCTACCCCCCCCCC	11[432]	1[439]	GAGCCACCCACCCTCAGGAGGTTTGTCTTTCCAAAGGAAC	40
12[119] 9[119] TAACCACCAGAAATAGCTGAATAAAGAAATTG 32 12[151] 9[151] TTATCTAAATTTGAGGCTTGCTGAGTGCCACG 32 12[183] 9[183] ATTTCTCCGTAAGCAACGTAATCATGTTTCCT 32 12[215] 9[215] GACTGAATGGCCTGGCGACGGAGGATTCCACA 32 12[247] 9[247] CCAGGGTTGCCAGGGTGCTGCGCACTCCAGCC 32 12[279] 9[279] GTAAGAGCATTCATGCGAAAACCACCGGATCC 32 12[311] 9[311] ATACATAACAACATTACCAATACTGAAAACGA 32 12[343] 9[343] CAGTTTAGTGAGATGAGGTAATAGGTCTTTAC 32 12[375] 9[375] TTACCCAAACCAGAACACAGATGAAGACGGTC 32 12[407] 9[407] CCGGAACCTAGCGACACTTGATATATAAATCC 32 13[72] 11[79] AGCAGCCTTATCTGAATTATCAGG 24 13[104] 11[111] CGGAACAAAGAAGAGGAGCCTGATTG 24 13[168] 11[143] GATAATACAATATCTTCAGTTGGC 24 13[20] 11[207] AATATAGGCGGCTGACTTGTATAC 24 13[20] 11[207] AATATAGGCGGCTGACTTTAC 24 13[28] 11[335] TCATCAGTGAACTCTGTGTGTATAC 24 13[28] 11[335] TCATCAGTGAATACCACAAAAGAA 24 13[38] 11[367] CGAGAAACATCACCACAAAAGAA 24 13[392] 11[399] GTAATCAGAGACCCCCCCCCCCCCCCCCCCCCCCCCCCC	12[55]	9[55]	GAGCGTCTTTGTTTAACTAAGAACTCATCGTA	32
12[151] 9[151] TTATCTAAATTTGAGGCTTGCTGAGTGCCACG 32 12[183] 9[183] ATTTCTCCGTAAGCAACGTAATCATGTTTCCT 32 12[215] 9[215] GACTGAATGGCCTGGCGACGGAGGATTCCACA 32 12[247] 9[247] CCAGGGTTGCCAGGGTGCTGCGCACTCCAGCC 32 12[279] 9[279] GTAAGAGCATTCATGCGAAAACCACCGGATCC 32 12[311] 9[311] ATACATAACAACATTACCAATACTGAAAACGA 32 12[343] 9[343] CAGTTTAGTGAGATGAGGTAATAGGTCTTTAC 32 12[375] 9[375] TTACCCAAACCAGAACACAGATGAAGACGGTC 32 12[407] 9[407] CCGGAACCTAGCGACACTTGATATATAAATCC 32 13[72] 11[79] AGCAGCCTTATCTGAATTATCCAG 24 13[104] 11[111] CGGAACAAAGAAGAGGAGCCTGATTG 24 13[186] 11[143] GATAATACAATATCTTCAGTTGGC 24 13[200] 11[207] AATATAGGCGGCTGATTG 24 13[232] 11[239] CAGGAGAATCCCAGTGCTATTACC 24 13[24] 11[171] GGTTGTGAAACAGGTCTTATAC 24 13[286] 11[335] TAACGGAACGCAAAAACAGAAGAAGAA 24 13[296] 11[303] TAACGGAACGCCAAAAAAAAAAAAAAAAAAAAAAAAAAA	12[87]	9[87]	TTCCTGATTTACAGAGCAAAATCAAAGCAAAT	32
12[183] 9[183] ATTTCTCCGTAAGCAACGTAATCATGTTTCCT 32 12[215] 9[215] GACTGAATGGCCTGGCGACGGAGGATTCCACA 32 12[247] 9[247] CCAGGGTTGCCAGGGTGCTGCGCACTCCAGCC 32 12[279] 9[279] GTAAGAGCATTCATGCGAAAACCACCGGATCC 32 12[311] 9[311] ATACATAACAACATTACCAATACTGAAAACGA 32 12[343] 9[343] CAGTTTAGTGAGATGAGGTAATAGGTCTTTAC 32 12[375] 9[375] TTACCCAAACCAGAACACAGATGAAGACGGTC 32 12[407] 9[407] CCGGAACCTAGCGACACTTGATATATAAAATCC 32 13[72] 11[79] AGCAGCCTTATCTGAATTATCCAG 24 13[104] 11[111] CGGAACAAAGAAGAGGAGCCTGATTG 24 13[136] 11[143] GATAATACAATATCTTCAGTTGGC 24 13[168] 11[175] TGCCATCTGAACTCTGTGGTGTAA 24 13[200] 11[207] AATATAGGCGGCTGACTGGTGCTT 24 13[232] 11[239] CAGGAGAATCCCAGTGCTATTAC 24 13[264] 11[271] GGTTGTGAACAGGCGCTGCAACT 24 13[296] 11[303] TAACGGAACGCCAAAAAGAAGAA 24 13[328] 11[335] TCATCAGTGAATACACACAAAAGAA 24 13[360] 11[367] CGAGAAACATCACACAAAAGAA 24 13[392] 11[399] GTAATCAGAGAGCCCTCCCT 24 13[424] 11[431] TAGCGTCAGCCATCTTCACCCCTCA 24 13[424] 11[431] 14GCGTCAGCCATCTTCACCCTCA 24 13[424] 11[431] 14GCGTCAGCCATCTTCACCCTCA 24 13[424] 11[431] 14GCGTCAGCATCTTCACCCCTCA 24 13[424] 11[431] 14GCGTCAGCATCTTCACCCCTCA 24 14 14 14 14 14 14 14	12[119]	9[119]	TAACCACCAGAAATAGCTGAATAAAGAAATTG	32
12[215] 9[215] GACTGAATGGCCTGGCGACGGAGGATTCCACA 32 12[247] 9[247] CCAGGGTTGCCAGGGTGCTGCGCACTCCAGCC 32 12[279] 9[279] GTAAGAGCATTCATGCGAAAACCACCGGATCC 32 12[311] 9[311] ATACATAACAACATTACCAATACTGAAAACGA 32 12[343] 9[343] CAGTTTAGTGAGATGAGGTAATAGGTCTTTAC 32 12[375] 9[375] TTACCCAAACCAGAACACAGATGAAGACGGTC 32 12[407] 9[407] CCGGAACCTAGCGACACTTGATATAAAATCC 32 13[72] 11[79] AGCAGCCTTATCTGAATTATCCAG 24 13[104] 11[111] CGGAACAAAGAAGGAGCCTGATTG 24 13[136] 11[143] GATAATACAATATCTTCAGTTGGC 24 13[168] 11[175] TGCCATCTGAACTCTGTGGTGTAA 24 13[200] 11[207] AATATAGGCGGCTGACTGGTGCTT 24 13[232] 11[239] CAGGAGAATTCCCAGTGCTATTAC 24 13[296] 11[303] TAACGGAACGCCAAAAACGATAAA 24 13[328] 11[357] CGAGAAACATCAACGTCTTCATCA 24 13[392]	12[151]	9[151]	TTATCTAAATTTGAGGCTTGCTGAGTGCCACG	32
12[247] 9[247] CCAGGGTTGCCAGGGTGCTGCGCACTCCAGCC 32 12[279] 9[279] GTAAGAGCATTCATGCGAAAACCACCGGATCC 32 12[311] 9[311] ATACATAACAACATTACCAATACTGAAAACGA 32 12[343] 9[343] CAGTTTAGTGAGATGAGGTAATAGGTCTTTAC 32 12[375] 9[375] TTACCCAAACCAGAACACAGATGAAGACGGTC 32 12[407] 9[407] CCGGAACCTAGCGACACTTGATATATAAATCC 32 13[72] 11[79] AGCAGCCTTATCTGAATTATCCAG 24 13[104] 11[111] CGGAACAAAGAAGGAGCCTGATTG 24 13[136] 11[143] GATAATACAATATCTTCAGTTGGC 24 13[168] 11[175] TGCCATCTGAACTCTGTGGTGTAA 24 13[200] 11[207] AATATAGGCGGCTGACTGGTGCTT 24 13[232] 11[239] CAGGAGAATTCCCAGTGCTATTAC 24 13[296] 11[303] TAACGGAACGCCAAAAACGATAAA 24 13[328] 11[335] TCATCAGTGAATACCACAAAAGAA 24 13[390] 11[367] CGAGAAACATCAACGTCTTCATCA 24 13[424]	12[183]	9[183]	ATTTCTCCGTAAGCAACGTAATCATGTTTCCT	32
12[279] 9[279] GTAAGAGCATTCATGCGAAAACCACCGGATCC 32 12[311] 9[311] ATACATAACAACATTACCAATACTGAAAACGA 32 12[343] 9[343] CAGTTTAGTGAGATGAGGTAATAGGTCTTTAC 32 12[375] 9[375] TTACCCAAACCAGAACACAGATGAAGACGGTC 32 12[407] 9[407] CCGGAACCTAGCGACACTTGATATATAAATCC 32 13[72] 11[79] AGCAGCCTTATCTGAATTATCCAG 24 13[104] 11[111] CGGAACAAGAGAGGAGCCTGATTG 24 13[136] 11[143] GATAATACAATATCTTCAGTTGGC 24 13[168] 11[175] TGCCATCTGAACTCTGTGGTGTAA 24 13[200] 11[207] AATATAGGCGGCTGACTGGTGCTT 24 13[232] 11[239] CAGGAGAATTCCCAGTGCTATTAC 24 13[264] 11[271] GGTTGTGAAACAGGCCTAAAA 24 13[296] 11[303] TAACGGAACGCCAAAAACGATAAA 24 13[328] 11[367] CGAGAAACATCACACAAAAGAA 24 13[392] 11[399] GTAATCAGAGAGCCACCCCCCCCC 24 13[424] 11[43	12[215]	9[215]	GACTGAATGGCCTGGCGACGGAGGATTCCACA	32
12[279] 9[279] GTAAGAGCATTCATGCGAAAACCACCGGATCC 32 12[311] 9[311] ATACATAACAACATTACCAATACTGAAAACGA 32 12[343] 9[343] CAGTTTAGTGAGATGAGGTAATAGGTCTTTAC 32 12[375] 9[375] TTACCCAAACCAGAACACAGATGAAGACGGTC 32 12[407] 9[407] CCGGAACCTAGCGACACTTGATATATAAATCC 32 13[72] 11[79] AGCAGCCTTATCTGAATTATCCAG 24 13[104] 11[111] CGGAACAAGAGAGGAGCCTGATTG 24 13[136] 11[143] GATAATACAATATCTTCAGTTGGC 24 13[168] 11[175] TGCCATCTGAACTCTGTGGTGTAA 24 13[200] 11[207] AATATAGGCGGCTGACTGGTGCTT 24 13[232] 11[239] CAGGAGAATTCCCAGTGCTATTAC 24 13[264] 11[271] GGTTGTGAAACAGGCCTAAAA 24 13[296] 11[303] TAACGGAACGCCAAAAACGATAAA 24 13[328] 11[367] CGAGAAACATCACACAAAAGAA 24 13[392] 11[399] GTAATCAGAGAGCCACCCCCCCCC 24 13[424] 11[43	12[247]	9[247]	CCAGGGTTGCCAGGGTGCTGCGCACTCCAGCC	32
12[343] 9[343] CAGTTTAGTGAGATGAGGTAATAGGTCTTTAC 32 12[375] 9[375] TTACCCAAACCAGAACACAGATGAAGACGGTC 32 12[407] 9[407] CCGGAACCTAGCGACACTTGATATATAAATCC 32 13[72] 11[79] AGCAGCCTTATCTGAATTATCCAG 24 13[104] 11[111] CGGAACAAAGAAGAGGAGCCTGATTG 24 13[136] 11[143] GATAATACAATATCTTCAGTTGGC 24 13[168] 11[175] TGCCATCTGAACTCTGTGGTGTAA 24 13[200] 11[207] AATATAGGCGGCTGACTGGTGCTT 24 13[232] 11[239] CAGGAGAATTCCCAGTGCTATTAC 24 13[264] 11[271] GGTTGTGAAACAGGCCTGCAACT 24 13[296] 11[303] TAACGGAACGCCAAAAACGATAAA 24 13[328] 11[335] TCATCAGTGAATACCACAAAAGAA 24 13[390] 11[367] CGAGAAACATCAACGTCTTCATCA 24 13[424] 11[431] TAGCGTCAGCCATCTTCACCCTCA 24	12[279]	9[279]	GTAAGAGCATTCATGCGAAAACCACCGGATCC	
12[375] 9[375] TTACCCAAACCAGAACACAGATGAAGACGGTC 32 12[407] 9[407] CCGGAACCTAGCGACACTTGATATATAAATCC 32 13[72] 11[79] AGCAGCCTTATCTGAATTATCCAG 24 13[104] 11[111] CGGAACAAAGAAGGAGCCTGATTG 24 13[136] 11[143] GATAATACAATATCTTCAGTTGGC 24 13[168] 11[175] TGCCATCTGAACTCTGTGGTGTAA 24 13[200] 11[207] AATATAGGCGGCTGACTGGTGCTT 24 13[232] 11[239] CAGGAGAATTCCCAGTGCTATTAC 24 13[264] 11[271] GGTTGTGAAACAGGCGCTGCAACT 24 13[296] 11[303] TAACGGAACGCCAAAAACGATAAA 24 13[328] 11[335] TCATCAGTGAATACCACAAAAGAA 24 13[390] 11[367] CGAGAAACATCAACGTCTTCATCA 24 13[392] 11[399] GTAATCAGAGAGCCACGCCTCCCT 24 13[424] 11[431] TAGCGTCAGCCATCTTCACCCTCA 24	12[311]	9[311]	ATACATAACAACATTACCAATACTGAAAACGA	32
12[407] 9[407] CCGGAACCTAGCGACACTTGATATATAAAATCC 32 13[72] 11[79] AGCAGCCTTATCTGAATTATCCAG 24 13[104] 11[111] CGGAACAAAGAAGGAGCCTGATTG 24 13[136] 11[143] GATAATACAATATCTTCAGTTGGC 24 13[168] 11[175] TGCCATCTGAACTCTGTGGTGTAA 24 13[200] 11[207] AATATAGGCGGCTGACTGGTGCTT 24 13[232] 11[239] CAGGAGAATTCCCAGTGCTATTAC 24 13[264] 11[271] GGTTGTGAAACAGGCGTGCAACT 24 13[296] 11[303] TAACGGAACGCCAAAAACGATAAA 24 13[328] 11[335] TCATCAGTGAATACCACAAAAGAA 24 13[360] 11[367] CGAGAAACATCAACGTCTTCATCA 24 13[392] 11[399] GTAATCAGAGAGCCACGCCTCCCT 24 13[424] 11[431] TAGCGTCAGCCATCTTCACCCTCA 24	12[343]	9[343]	CAGTTTAGTGAGATGAGGTAATAGGTCTTTAC	32
12[407] 9[407] CCGGAACCTAGCGACACTTGATATATAAAATCC 32 13[72] 11[79] AGCAGCCTTATCTGAATTATCCAG 24 13[104] 11[111] CGGAACAAAGAAGGAGCCTGATTG 24 13[136] 11[143] GATAATACAATATCTTCAGTTGGC 24 13[168] 11[175] TGCCATCTGAACTCTGTGGTGTAA 24 13[200] 11[207] AATATAGGCGGCTGACTGGTGCTT 24 13[232] 11[239] CAGGAGAATTCCCAGTGCTATTAC 24 13[264] 11[271] GGTTGTGAAACAGGCGCTGCAACT 24 13[296] 11[303] TAACGGAACGCCAAAAACGATAAA 24 13[328] 11[335] TCATCAGTGAATACCACAAAAGAA 24 13[390] 11[367] CGAGAAACATCAACGTCTTCATCA 24 13[392] 11[399] GTAATCAGAGAGCCACGCCTCCCT 24 13[424] 11[431] TAGCGTCAGCCATCTTCACCCTCA 24	12[375]	9[375]	TTACCCAAACCAGAACACAGATGAAGACGGTC	32
13[104] 11[111] CGGAACAAAGAAGGAGCCTGATTG 24 13[136] 11[143] GATAATACAATATCTTCAGTTGGC 24 13[168] 11[175] TGCCATCTGAACTCTGTGGTGTAA 24 13[200] 11[207] AATATAGGCGGCTGACTGGTGCTT 24 13[232] 11[239] CAGGAGAATTCCCAGTGCTATTAC 24 13[264] 11[271] GGTTGTGAAACAGGCGCTGCAACT 24 13[296] 11[303] TAACGGAACGCCAAAAACGATAAA 24 13[328] 11[335] TCATCAGTGAATACCACAAAAGAA 24 13[360] 11[367] CGAGAAACATCAACGTCTTCATCA 24 13[392] 11[399] GTAATCAGAGAGCCACGCCTCCCT 24 13[424] 11[431] TAGCGTCAGCCATCTTCACCCTCA 24	12[407]		CCGGAACCTAGCGACACTTGATATATAAATCC	32
13[136] 11[143] GATAATACAATATCTTCAGTTGGC 24 13[168] 11[175] TGCCATCTGAACTCTGTGGTGTAA 24 13[200] 11[207] AATATAGGCGGCTGACTGGTGCTT 24 13[232] 11[239] CAGGAGAATTCCCAGTGCTATTAC 24 13[264] 11[271] GGTTGTGAAACAGGCGCTGCAACT 24 13[296] 11[303] TAACGGAACGCCAAAAACGATAAA 24 13[328] 11[335] TCATCAGTGAATACCACAAAAGAA 24 13[360] 11[367] CGAGAAACATCAACGTCTTCATCA 24 13[392] 11[399] GTAATCAGAGAGCCACGCCTCCCT 24 13[424] 11[431] TAGCGTCAGCCATCTTCACCCTCA 24	13[72]	11[79]	AGCAGCCTTATCTGAATTATCCAG	24
13[168] 11[175] TGCCATCTGAACTCTGTGGTGTAA 24 13[200] 11[207] AATATAGGCGGCTGACTGGTGCTT 24 13[232] 11[239] CAGGAGAATTCCCAGTGCTATTAC 24 13[264] 11[271] GGTTGTGAAACAGGCGCTGCAACT 24 13[296] 11[303] TAACGGAACGCCAAAAACGATAAA 24 13[328] 11[335] TCATCAGTGAATACCACAAAAGAA 24 13[360] 11[367] CGAGAAACATCAACGTCTTCATCA 24 13[392] 11[399] GTAATCAGAGAGCCACGCCTCCCT 24 13[424] 11[431] TAGCGTCAGCCATCTTCACCCTCA 24	13[104]	11[111]	CGGAACAAAGAAGGAGCCTGATTG	24
13[200] 11[207] AATATAGGCGGCTGACTGGTGCTT 24 13[232] 11[239] CAGGAGAATTCCCAGTGCTATTAC 24 13[264] 11[271] GGTTGTGAAACAGGCGCTGCAACT 24 13[296] 11[303] TAACGGAACGCCAAAAACGATAAA 24 13[328] 11[335] TCATCAGTGAATACCACAAAAGAA 24 13[360] 11[367] CGAGAAACATCAACGTCTTCATCA 24 13[392] 11[399] GTAATCAGAGAGCCACGCCTCCCT 24 13[424] 11[431] TAGCGTCAGCCATCTTCACCCTCA 24	13[136]	11[143]	GATAATACAATATCTTCAGTTGGC	24
13[232] 11[239] CAGGAGAATTCCCAGTGCTATTAC 24 13[264] 11[271] GGTTGTGAAACAGGCGCTGCAACT 24 13[296] 11[303] TAACGGAACGCCAAAAACGATAAA 24 13[328] 11[335] TCATCAGTGAATACCACAAAAGAA 24 13[360] 11[367] CGAGAAACATCAACGTCTTCATCA 24 13[392] 11[399] GTAATCAGAGAGCCACGCCTCCCT 24 13[424] 11[431] TAGCGTCAGCCATCTTCACCCTCA 24	13[168]	11[175]	TGCCATCTGAACTCTGTGGTGTAA	24
13[264] 11[271] GGTTGTGAAACAGGCGCTGCAACT 24 13[296] 11[303] TAACGGAACGCCAAAAACGATAAA 24 13[328] 11[335] TCATCAGTGAATACCACAAAAGAA 24 13[360] 11[367] CGAGAAACATCAACGTCTTCATCA 24 13[392] 11[399] GTAATCAGAGAGCCACGCCTCCCT 24 13[424] 11[431] TAGCGTCAGCCATCTTCACCCTCA 24	13[200]	11[207]	AATATAGGCGGCTGACTGGTGCTT	24
13[264] 11[271] GGTTGTGAAACAGGCGCTGCAACT 24 13[296] 11[303] TAACGGAACGCCAAAAACGATAAA 24 13[328] 11[335] TCATCAGTGAATACCACAAAAGAA 24 13[360] 11[367] CGAGAAACATCAACGTCTTCATCA 24 13[392] 11[399] GTAATCAGAGAGCCACGCCTCCCT 24 13[424] 11[431] TAGCGTCAGCCATCTTCACCCTCA 24	13[232]	<u>11[239]</u>	<u>CAGGAGAATTCCCAGTGCTATTAC</u>	<u>24</u>
13[328] 11[335] TCATCAGTGAATACCACAAAAGAA 24 13[360] 11[367] CGAGAAACATCAACGTCTTCATCA 24 13[392] 11[399] GTAATCAGAGAGCCACGCCTCCCT 24 13[424] 11[431] TAGCGTCAGCCATCTTCACCCTCA 24	13[264]	11[271]	GGTTGTGAAACAGGCGCTGCAACT	24
13[360] 11[367] CGAGAAACATCAACGTCTTCATCA 24 13[392] 11[399] GTAATCAGAGAGCCACGCCTCCCT 24 13[424] 11[431] TAGCGTCAGCCATCTTCACCCTCA 24	13[296]	11[303]	TAACGGAACGCCAAAAACGATAAA	24
13[392] 11[399] GTAATCAGAGAGCCACGCCTCCCT 24 13[424] 11[431] TAGCGTCAGCCATCTTCACCCTCA 24	13[328]	11[335]	TCATCAGTGAATACCACAAAAGAA	24
13[392] 11[399] GTAATCAGAGAGCCACGCCTCCCT 24 13[424] 11[431] TAGCGTCAGCCATCTTCACCCTCA 24		11[367]	CGAGAAACATCAACGTCTTCATCA	24
13[424] 11[431] TAGCGTCAGCCATCTTCACCCTCA 24			GTAATCAGAGAGCCACGCCTCCCT	24
	13[424]	11[431]	TAGCGTCAGCCATCTTCACCCTCA	24
[14[33] 0[47] AATTAACTCCAATAATTCCTTATCA [23	14[55]	8[47]	AATTAACTCCAATAATTCCTTATCA	25

1/1071	01001		24
14[87]	8[80]	ACATAAAAAATAGCTAAACAGTAC	
14[119]	8[112]	AACGTTATAAGTAAGCTTTTCAGG	24
14[151]	8[144]	AATTCGACAGGAAACCCAGAAGAT	24
14[183]	8[176]	TATGATACACCCAAAAGTGCCTAA	24
14[215]	8[208]	CTAATCTAATTACGCAACGAGCCG	24
<u>14[247]</u>	8[240]	TATGACAACATACATAATCTGCCA	<u>24</u>
14[279]	8[272]	CTTAAGTGGCAAAGACATATCGCG	24
14[311]	8[304]	GTCAGGACACAATCAAAAAAGATT	24
14[343]	8[336]	TATGCGATCGCCAAAGTATTATAG	24
14[375]	8[368]	TTAATTTCTGAGGGAGTGTGTCGA	24
14[407]	8[400]	TGAAACCAATTCATTATGCCTTGA	24
15[64]	9[79]	GAAACAATGAAATAGCACAGGGAACCAATAGC	32
15[96]	9[111]	AAGCCCTTTTTAAGAATAATTTTAAGAAATAA	32
15[128]	9[143]	GAACAAAGTTACCAGAAACTCGTACTGCAACA	32
15[160]	9[175]	GCAATAATAACGGAATCGACAGTGAATATAGC	32
15[192]	9[207]	ATGATTAAGACTCCTTTTTACGCTCGCTCACA	32
15[224]	9[239]	GCAAACGTAGAAAATATGTCCCGCAGATCGCA	32
15[256]	9[271]	<u>AACATATAAAAGAAACTCCTTAGTTTCTGGTG</u>	<u>32</u>
15[288]	9[303]	ATAAGTTTATTTTGTCGTTGGGAAACAGTTCA	32
15[320]	9[335]	TCATATGGTTTACCAGTTTAAGAAAAAATCAG	32
15[352]	9[367]	GCGACATTCAACCGATAACTTTAACGAGGCGC	32
15[384]	9[399]	AATATTGACGGAAATTTCGATAGCAACAACAA	32
15[416]	9[439]	TTATCACCGTCACCGATAGCAAGGGGAAAGCGCAGTCTCT	40

Table S4.Reported volumetric phase transition dynamics of thermo-responsive polymer particles

Reference	Year	Particle size	Characterization	Dynamics
Tanaka et al ²⁶	1988	234 μm - 3.1 time smaller	water exchange heating	The switching time of the temperature of the water was about 10 s, which is much shorter than the swelling or shrinking time of most of the gels.
Andrew Lyon Mostafa A. El- Sayed ²⁷	2001	200 nm	turbidity, laser T-jump transmittance signal	ns to μs, 0.39μs
Asher et al ²⁸	2004	self-assembling crystalline colloidal arrays, 350 nm – 125 nm	T-jump. Diffraction for CCA single particle: turbidity	The shortest time ~ 900 ns kinetics accounts for ~25% of the transmission change, while the longer time ~20µs kinetics accounts for another ~25%. The longest ~140µs kinetics accounts for the remaining 50% extinction increase. Individual NIPAM sphere switching occurs in the ~100 ns time regime.
Asher et al ²⁹	2009	160nm-80nm	T-jump and UV resonance Raman (UVRR) spectroscopy	Mono-exponential collapse with $\tau \sim 360 \pm 85 \text{ ns}$
Asher et al ³⁰	2018	404 nm – 143 nm	visible non-resonance Raman T-jump	The PNIPAM hydrophobic isopropyl and methylene groups dehydrate with time constants of 109 ± 64 and 104 ± 44 ns, initiating the volume collapse of PNIPAM. The subsequent dehydration of the PNIPAM amide groups is significantly slower, as our group previously discovered $(360 \pm 85 \text{ ns})$
Hu et al ³¹	2009	60 μm	modeling and taking image at different timepoints	10-100 sec
Marquez et al ³²	2006	μm scale minigel	modeling and taking image at different timepoints	~ sec scale
Salaita et al ³³	2019	550 nm-350 nm	IR T-jump	1.42 μs (40.7%), 10.80 μs (36.7%), 142 μs (22.6%), 35°C to 45°C

Table S5.Single-exponential fits of T-jump & mechanical unfolding kinetics of DNA hairpin

		T	' jump	·· I
		Replicate #1	Replicate #2	Replicate #3
	y0	1.04206	1.04874	1.09249
50°C	A1	-0.02576	-0.03779	-0.07818
	t1	-7.36E-05	-4.17E-05	-5.45E-05
	y0	1.11706	1.10222	1.10472
55°C	A1	-0.11873	-0.09197	-0.0954
	t1	-5.12E-05	-3.55E-05	-4.92E-05
	y0	1.25246	1.18715	1.14314
60°C	A1	-0.27482	-0.18935	-0.1496
	t1	-3.85E-05	-3.18E-05	-2.98E-05
	y0	1.27531	1.27014	1.11876
65°C	A1	-0.30072	-0.29085	-0.14145
	t1	-2.27E-05	-2.10E-05	-1.46E-05
	_	For	ce jump	
		Replicate #1	Replicate #2	Replicate #3
	y0	1.12115	1.08967	1.07291
45°C	A1	-0.111	-0.06864	-0.05888
	t1	-1.66E-04	-3.70E-04	-2.06E-04
	y0	1.20089	1.10659	1.08534
50°C	A1	-0.19963	-0.09198	-0.06815
	t1	-1.08E-04	-1.66E-04	-1.64E-04
	y0	1.29485	1.11821	1.05727
55°C	A1	-0.29847	-0.11953	-0.04222
	t1	-5.41E-05	-6.72E-05	-7.27E-05
	y0	1.23931	1.161	1.04781
60°C	A1	-0.24386	-0.1643	-0.03935
	t1	-2.91E-05	-4.52E-05	-5.07E-05
	y0	1.22235	1.18765	1.05924
65°C	A1	-0.2463	-0.21118	-0.0465
	t1	-1.88E-05	-2.19E-05	-2.59E-05

Table S6.Statistical two-way ANOVA test of angle and force of the OPFC at different configuration and temperature.

temperature.						
		Angle of be	ending		Force	
Configuration- Temperature)	Significant?	Summary	Adjusted P Value	Significant?	Summary	Adjusted P Value
L _{10nm} -40°C vs. L _{10nm} -55°C	Yes	***	<0.00000000000000000001	No	ns	0.99999999
L _{30nm} -40°C vs. L _{30nm} -55°C	Yes	****	<0.00000000000000001	No	ns	1
L _{50nm} -40°C vs. L _{50nm} -55°C	Yes	****	<0.00000000000000001	No	ns	>0.99999999999
L _{70nm} -40°C vs. L _{70nm} -55°C	Yes	****	<0.00000000000000001	No	ns	0.999996866
L _{90nm} -40°C vs. L _{90nm} -55°C	Yes	***	<0.000000000000000001	No	ns	0.791015348
L _{110nm} -40°C vs. L _{110nm} -55°C	Yes	****	<0.00000000000000001	No	ns	0.168494339
$L_{110nm}(\Delta 32)$ -40°C vs. $L_{110nm}(\Delta 32)$ -55°C	Yes	***	<0.00000000000000000001	No	ns	0.997914188
L _{10nm} -40°C vs. L _{30nm} -40°C	No	ns	0.316370815	No	ns	>0.99999999999
L _{10nm} -40°C vs. L _{50nm} -40°C	Yes	***	<0.00000000000000001	No	ns	>0.99999999999
L _{10nm} -40°C vs. L _{70nm} -40°C	Yes	****	<0.00000000000000001	No	ns	>0.99999999999
L _{10nm} -40°C vs. L _{90nm} -40°C	Yes	****	<0.00000000000000001	No	ns	>0.99999999999
L _{10nm} -40°C vs. L _{110nm} -40°C	Yes	****	1.40249E-06	No	ns	0.99999996
L _{10nm} -40°C vs. L _{110nm} (Δ32)-40°C	Yes	***	<0.00000000000000001	No	ns	>0.99999999999
L _{10nm} -55°C vs. L _{30nm} -55°C	Yes	****	<0.00000000000000001	No	ns	>0.99999999999
L _{10nm} -55°C vs. L _{50nm} -55°C	Yes	***	<0.00000000000000001	No	ns	0.99999982
L _{10nm} -55°C vs. L _{70nm} -55°C	Yes	***	<0.00000000000000001	No	ns	0.99937119
L _{10nm} -55°C vs. L _{90nm} -55°C	Yes	***	<0.00000000000000001	No	ns	0.539003525
L _{10nm} -55°C vs. L _{110nm} -55°C	Yes	***	<0.00000000000000001	Yes	*	0.029530476
L _{10nm} -55°C vs. L _{110nm} (Δ32)-55°C	Yes	****	<0.00000000000000001	No	ns	0.983240496
L _{30nm} -40°C vs. L _{50nm} -40°C	Yes	***	<0.00000000000000001	No	ns	>0.99999999999
L _{30nm} -40°C vs. L _{70nm} -40°C	Yes	****	4.40394E-06	No	ns	>0.99999999999
L _{30nm} -40°C vs. L _{90nm} -40°C	Yes	***	1.5316E-11	No	ns	>0.99999999999
L _{30nm} -40°C vs. L _{110nm} -40°C	No	ns	0.752058186	No	ns	1
L _{30nm} -40°C vs. L _{110nm} (Δ32)-40°C	Yes	***	<0.000000000000000001	No	ns	>0.99999999999
L _{30nm} -55°C vs. L _{50nm} -55°C	Yes	***	<0.000000000000000001	No	ns	1
L _{30nm} -55°C vs. L _{70nm} -55°C	Yes	***	<0.000000000000000001	No	ns	0.999915334
L _{30nm} -55°C vs. L _{90nm} -55°C	Yes	****	<0.00000000000000001	No	ns	0.652751016
L _{30nm} -55°C vs. L _{110nm} -55°C	Yes	****	<0.00000000000000001	Yes	*	0.046820994
L _{30nm} -55°C vs. L _{110nm} (Δ32)-55°C	Yes	***	<0.00000000000000000001	No	ns	0.99463928

L _{50nm} -40°C vs. L _{70nm} -40°C	Yes	***	0.000298267	No	ns	>0.99999999999
L _{50nm} -40°C vs. L _{90nm} -40°C	No	ns	0.337297518	No	ns	>0.99999999999
L _{50nm} -40°C vs. L _{110nm} -40°C	Yes	***	<0.00000000000000001	No	ns	0.99999987
L _{50nm} -40°C vs. L _{110nm} (Δ32)-40°C	Yes	****	<0.00000000000000001	No	ns	>0.99999999999
L _{50nm} -55°C vs. L _{70nm} -55°C	Yes	****	<0.00000000000000001	No	ns	0.999998522
L _{50nm} -55°C vs. L _{90nm} -55°C	Yes	***	<0.00000000000000001	No	ns	0.801620993
L _{50nm} -55°C vs. L _{110nm} -55°C	Yes	****	<0.00000000000000001	No	ns	0.087276756
L _{50nm} -55°C vs. L _{110nm} (Δ32)-55°C	Yes	****	<0.00000000000000001	No	ns	0.99939538
L _{70nm} -40°C vs. L _{90nm} -40°C	No	ns	0.998819081	No	ns	>0.99999999999
L _{70nm} -40°C vs. L _{110nm} -40°C	No	ns	0.067160378	No	ns	0.99999999
L _{70nm} -40°C vs. L _{110nm} (Δ32)-40°C	Yes	***	<0.00000000000000001	No	ns	>0.99999999999
L _{70nm} -55°C vs. L _{90nm} -55°C	Yes	***	<0.00000000000000001	No	ns	0.983141406
L _{70nm} -55°C vs. L _{110nm} -55°C	Yes	***	<0.00000000000000001	No	ns	0.304753716
L _{70nm} -55°C vs. L _{110nm} (Δ32)-55°C	Yes	***	<0.00000000000000001	No	ns	0.99999984
L _{90nm} -40°C vs. L _{110nm} -40°C	Yes	***	7.48871E-06	No	ns	1
L _{90nm} -40°C vs. L _{110nm} (Δ32)-40°C	Yes	***	<0.00000000000000001	No	ns	>0.99999999999
L _{90nm} -55°C vs. L _{110nm} -55°C	Yes	***	<0.000000000000000000001	No	ns	1
L _{90nm} -55°C vs. L _{110nm} (Δ32)-55°C	Yes	***	<0.000000000000000000001	No	ns	0.999364715
L _{110nm} -40°C vs. L _{110nm} (Δ32)-40°C	Yes	***	<0.000000000000000000001	No	ns	0.9999998
L _{110nm} -55°C vs. L _{110nm} (Δ32)-55°C	Yes	***	<0.000000000000000000001	No	ns	0.561423678

Reference

- 1. Ye, X.; Zheng, C.; Chen, J.; Gao, Y.; Murray, C. B., Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. *Nano Lett.* **2013**, *13* (2), 765-71.
- 2. Orendorff, C. J.; Murphy, C. J., Quantitation of Metal Content in the Silver-Assisted Growth of Gold Nanorods. *The Journal of Physical Chemistry B* **2006**, *110* (9), 3990-3994.
- 3. Bazrafshan, A.; Meyer, T. A.; Su, H.; Brockman, J. M.; Blanchard, A. T.; Piranej, S.; Duan, Y.; Ke, Y.; Salaita, K., Tunable DNA Origami Motors Translocate Ballistically Over mum Distances at nm/s Speeds. *Angew Chem Int Ed Engl* **2020**, *59* (24), 9514-9521.
- 4. Ke, Y.; Meyer, T.; Shih, W. M.; Bellot, G., Regulation at a distance of biomolecular interactions using a DNA origami nanoactuator. *Nat. Commun.* **2016,** *7*, 10935.
- 5. Petrosyan, R., Improved approximations for some polymer extension models. *Rheol. Acta* **2017,** *56* (1), 21-26.
- 6. Zhang, Y.; Qiu, Y.; Blanchard, A. T.; Chang, Y.; Brockman, J. M.; Ma, V. P.; Lam, W. A.; Salaita, K., Platelet integrins exhibit anisotropic mechanosensing and harness piconewton forces to mediate platelet aggregation. *Proc. Natl. Acad. Sci. U.S.A* **2018**, *115* (2), 325-330.
- 7. Liedl, T.; Högberg, B.; Tytell, J.; Ingber, D. E.; Shih, W. M., Self-assembly of three-dimensional prestressed tensegrity structures from DNA. *Nat. Nanotechnol.* **2010**, *5*, 520.
- 8. Castro, C. E.; Su, H.-J.; Marras, A. E.; Zhou, L.; Johnson, J., Mechanical design of DNA nanostructures. *Nanoscale* **2015**, *7* (14), 5913-5921.
- 9. Woodside, M. T.; Behnke-Parks, W. M.; Larizadeh, K.; Travers, K.; Herschlag, D.; Block, S. M., Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. *Proc. Natl. Acad. Sci. U.S.A* **2006**, *103* (16), 6190-5.
- 10. Bell, G. I., Models for the specific adhesion of cells to cells. *Science* **1978**, 200 (4342), 618-27.
- 11. Ouldridge, T. E.; Louis, A. A.; Doye, J. P. K., Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. *The Journal of chemical physics* **2011**, *134* (8), 085101.
- 12. Šulc, P.; Romano, F.; Ouldridge, T. E.; Rovigatti, L.; Doye, J. P. K.; Louis, A. A., Sequence-dependent thermodynamics of a coarse-grained DNA model. *The Journal of chemical physics* **2012**, *137* (13), 135101.
- 13. Snodin, B. E. K.; Randisi, F.; Mosayebi, M.; Šulc, P.; Schreck, J. S.; Romano, F.; Ouldridge, T. E.; Tsukanov, R.; Nir, E.; Louis, A. A.; Doye, J. P. K., Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. *The Journal of chemical physics* **2015**, *142* (23), 234901.
- 14. Snodin, B. E. K.; Schreck, J. S.; Romano, F.; Louis, A. A.; Doye, J. P. K., Coarse-grained modelling of the structural properties of DNA origami. *Nucleic acids research* **2019**, *47* (3), 1585-1597.
- 15. Bai, X.-c.; Martin, T. G.; Scheres, S. H. W.; Dietz, H., Cryo-EM structure of a 3D DNA-origami object. *Proc. Natl. Acad. Sci. U.S.A* **2012**, *109* (49), 20012-20017.
- 16. Chhabra, H.; Mishra, G.; Cao, Y.; Prešern, D.; Skoruppa, E.; Tortora, M. M. C.; Doye, J. P. K., Computing the Elastic Mechanical Properties of Rodlike DNA Nanostructures. *Journal of chemical theory and computation* **2020**, *16* (12), 7748-7763.

- 17. Engel, M. C.; Smith, D. M.; Jobst, M. A.; Sajfutdinow, M.; Liedl, T.; Romano, F.; Rovigatti, L.; Louis, A. A.; Doye, J. P. K., Force-Induced Unravelling of DNA Origami. *ACS Nano* **2018**, *12* (7), 6734-6747.
- 18. Romano, F.; Chakraborty, D.; Doye, J. P. K.; Ouldridge, T. E.; Louis, A. A., Coarsegrained simulations of DNA overstretching. *The Journal of chemical physics* **2013**, *138* (8), 085101.
- 19. Mosayebi, M.; Romano, F.; Ouldridge, T. E.; Louis, A. A.; Doye, J. P. K., The Role of Loop Stacking in the Dynamics of DNA Hairpin Formation. *The Journal of Physical Chemistry B* **2014**, *118* (49), 14326-14335.
- 20. Engel, M. C.; Romano, F.; Louis, A. A.; Doye, J. P. K., Measuring Internal Forces in Single-Stranded DNA: Application to a DNA Force Clamp. *Journal of chemical theory and computation* **2020**, *16* (12), 7764-7775.
- 21. Nickels, P. C.; Wunsch, B.; Holzmeister, P.; Bae, W.; Kneer, L. M.; Grohmann, D.; Tinnefeld, P.; Liedl, T., Molecular force spectroscopy with a DNA origami-based nanoscopic force clamp. *Science* **2016**, *354* (6310), 305-307.
- 22. Rovigatti, L.; Šulc, P.; Reguly, I. Z.; Romano, F., A comparison between parallelization approaches in molecular dynamics simulations on GPUs. *Journal of Computational Chemistry* **2015**, *36* (1), 1-8.
- 23. Russo, J.; Tartaglia, P.; Sciortino, F., Reversible gels of patchy particles: Role of the valence. *The Journal of chemical physics* **2009**, *131* (1), 014504.
- 24. Kube, M.; Kohler, F.; Feigl, E.; Nagel-Yüksel, B.; Willner, E. M.; Funke, J. J.; Gerling, T.; Stömmer, P.; Honemann, M. N.; Martin, T. G.; Scheres, S. H. W.; Dietz, H., Revealing the structures of megadalton-scale DNA complexes with nucleotide resolution. *Nature Communications* **2020**, *11* (1), 6229.
- 25. Cooper, M.; Ebner, A.; Briggs, M.; Burrows, M.; Gardner, N.; Richardson, R.; West, R., Cy3B: improving the performance of cyanine dyes. *J Fluoresc* **2004**, *14* (2), 145-50.
- 26. Sato Matsuo, E.; Tanaka, T., Kinetics of discontinuous volume—phase transition of gels. *The Journal of chemical physics* **1988**, *89* (3), 1695-1703.
- 27. Wang, J.; Gan, D.; Lyon, L. A.; El-Sayed, M. A., Temperature-jump investigations of the kinetics of hydrogel nanoparticle volume phase transitions. *J. Am. Chem. Soc* **2001**, *123* (45), 11284-9.
- 28. Reese, C. E.; Mikhonin, A. V.; Kamenjicki, M.; Tikhonov, A.; Asher, S. A., Nanogel nanosecond photonic crystal optical switching. *J. Am. Chem. Soc* **2004**, *126* (5), 1493-6.
- 29. Ahmed, Z.; Gooding, E. A.; Pimenov, K. V.; Wang, L.; Asher, S. A., UV resonance Raman determination of molecular mechanism of poly(N-isopropylacrylamide) volume phase transition. *J Phys Chem B* **2009**, *113* (13), 4248-56.
- 30. Wu, T. Y.; Zrimsek, A. B.; Bykov, S. V.; Jakubek, R. S.; Asher, S. A., Hydrophobic Collapse Initiates the Poly(N-isopropylacrylamide) Volume Phase Transition Reaction Coordinate. *J Phys Chem B* **2018**, *122* (11), 3008-3014.
- 31. Wahrmund, J.; Kim, J.-W.; Chu, L.-Y.; Wang, C.; Li, Y.; Fernandez-Nieves, A.; Weitz, D. A.; Krokhin, A.; Hu, Z., Swelling Kinetics of a Microgel Shell. *Macromolecules* **2009**, *42* (23), 9357-9365.
- 32. Suarez, I. J.; Fernandez-Nieves, A.; Marquez, M., Swelling kinetics of poly(N-isopropylacrylamide) minigels. *J Phys Chem B* **2006**, *110* (51), 25729-33.

33. Zhao, J.; Su, H.; Vansuch, G. E.; Liu, Z.; Salaita, K.; Dyer, R. B., Localized Nanoscale Heating Leads to Ultrafast Hydrogel Volume-Phase Transition. *ACS Nano* **2019**, *13* (1), 515-525.