Supplementary Information Imaging vesicle formation dynamics supports the flexible model of clathrinmediated endocytosis. Tomasz J. Nawara¹, Yancey D. Williams II¹, Tejeshwar C. Rao¹, Yuesong Hu², Elizabeth Sztul¹, Khalid Salaita² and Alexa L. Mattheyses^{1*} ¹Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA. ²Department of Chemistry, Emory University, Atlanta, GA, USA. *Address correspondence to mattheyses@uab.edu Contains: Supplementary Figures 1-10 Supplementary Tables 1-8 Raw western blots Supplementary Fig. 1: CLCa-STAR does not disrupt overall CME dynamics and transferrin uptake. a Representative Cos-7 cells from each time point of the transferrin-568 (TF-568) uptake assay, E488 – CLCa-STAR, E561 – TF-568. Only the EGFP channel is visualized for both wild-type (WT) and CLCa-STAR overexpressing (OE) cells. b Scatter plot of mean TF-568 intensity per cell at 0, 5, 10, 15, and 20 min for WT Cos-7 (n = 93, 93, 93, 93, 93 cells) and for CLCa-STAR OE (n = 89, 91, 93, 86, 92 cells). Data a and b is from three independent repeats). Supplementary Fig. 2: Experimental design, data acquisition, processing, and analysis. a Experimental set up with simultaneous 488 and 647 TIRF imaging (Created with BioRender.com). b STAR data processing and analysis pipeline. Supplementary Fig. 3: Representative intensity and Δz traces for CMEanalysis identified CCSs. Intensity was normalized for CLCa-STAR in both colors. Means \pm SEMs for presented cohorts (CCVs: 10-20s-n=147, 20-40s-n=124, 40-60s-n=40, >60s -n=28; FCLs: 10-20s-n=102, 20-40s-n=34, 40-60s-n=8, the cohort >60s was not displayed as too few tracks were present). Supplementary Fig. 4: Flat to Curved CCSs ratio is not alter by protein expression level in healthy cells. The flat to curved CCSs ratio was calculated for cells from Figure 2 and was correlated with the overall EGFP intensity of the cell body at t_0 . No correlation was found by a simple linear regression ($R^2 = 0.005$). Supplementary Fig. 5: CLCa-STAR, with or without the addition of iRFP713 cofactor biliverdin, behaves similarly to CLCa-EGFP. a Cos-7 cell transfected with CLCa-STAR with biliverdin during starvation - CLCa-STAR (+Biliv), Cos-7 cell transfected with CLCa-STAR without biliverdin during starvation - CLCa-STAR (-Biliv), and Cos-7 cell transfected with CLCa-EGFP without biliverdin during starvation - CLCa-EGFP (-Biliv), imaged using TIRF 488, white arrows point towards example clathrin accumulations, scale bar = 20 μ m. Kymographs of clathrin accumulation (gray), white arrows point towards example clathrin accumulations, scale bar = 5 μ m. b Histogram of lifetime distribution of CCSs per um², per minute (mean ± SEM). c Cumulative frequency of CCSs per um², per minute for each cell. Line – median, data was not normally distributed (one-sided Shapiro-Wilk test, p < 0.05 for all three groups), medians were not significantly different as tested by Kruskal-Wallis test, approximate p > 0.05; [median, n cells , n events] CLCa-STAR (+Biliv) = [0.01697, 11, 1847]; CLCa-STAR (-Biliv) = [0.01261, 11, 1383]; CLCa-EGFP (-Biliv) = [0.01657, 10, 1805] (Data in b and c is from two independent repeats). Supplementary Fig. 6: EPI/STAR analysis of CCS dynamics. a Principle of EPI/STAR analysis. As CCVs are internalized, they will disappear from the TIRF excitation field while remaining in EPI and positive Δz changes should be observed. In contrast FCLs, which do not result in endocytosis, should disappear simultaneously EPI and TIRF and no Δz changes should be observed (Created with BioRender.com). b Grouping of the EPI/STAR data based on the different signal disappearance dynamics from EPI and TIRF as well as the Δz for those puncta. Intensities are normalized. Means \pm SEMs (Representative traces from 2 replicates and 11 cells total: Internalization – n = 62, Rapid internalization – n = 132, FCLs dispersion – n = 44). c Plot of the difference distribution between EPI disappearance (EPI_{Dis}) and TIRF disappearance (TIRF_{Dis}) of all analyzed puncta separated on whether Δz changes were or were not induced. Data are presented as mean values \pm SEM (CCVs – n = 252 events, FCLs – n = 118 events, data from 2 replicates and 11 cells total, cohorts with mean of 2 or less events were discarded from quantifications, the signal disappearance was identified as a first frame when signal reached below background for five consecutive frames). Supplementary Fig. 7: Signal detection cut-off does not explain the variation in curvature formation. a Data from Figure 3 was reanalyzed using a range of detection cut-offs from 2 to 20 frames as indicated. The distribution of Δz_{Beg} - CLCa_{Beg}[s] are shown as histograms for each cutoff. b Summary of the distribution of events across the three membrane bending models and lifetime cohorts. Statistical analysis is summarized in Supplementary Table 3. Supplementary Fig. 8: Monte Carlo simulation of STAR measurements, with a variable amount of CLCa-STAR proteins present on the vesicle. a Simulation of vesicle formation with varying percentages of CLCa-STAR tagged proteins distributed randomly on the vesicle; percentage tagged indicated above the plots. b Monte Carlo simulation of 100 CCVs (colored lines) and their theoretical Δz measured by STAR microscopy, the thick blue line indicates mean for the simulation and black line indicates the theoretical center of mass (CM) for forming CCVs. ## **Supplementary Fig. 9: Automated analysis of the initiation of curvature formation. a** CMEanalysis outputs needed for automated data analysis, and post processing files description. **b** Data organization pre and post automated data processing using the given executable code. **c** Step-by-step explanation of data filtering and visualization. Supplementary Fig. 10: Automated flat and curved events sorting. a CMEanalysis outputs needed for automated data analysis, and post processing file descriptions. b Data organization pre and post automated data processing using the given executable code. **c** Step-by-step explanation of data filtering and visualization. **Supplementary Table 1:** Šídák's multiple comparisons statistics results for Fig. 1f, post two-way ANOVA. P values were adjusted for multiple comparison using statistical hypothesis testing. | Šídák's multiple comparisons test | Mean
Diff. | 95.00% CI of diff. | Summary | Adjusted P Value | |-----------------------------------|---------------|--------------------|---------|------------------| | | | WT Cos-7 | | | | 0 vs. 5 | -143.9 | -433.5 to 145.8 | ns | 0.1851 | | 0 vs. 10 | -214.7 | -415.8 to -13.68 | * | 0.044 | | 0 vs. 15 | -268.3 | -503.4 to -33.22 | * | 0.0387 | | 0 vs. 20 | -264.5 | -594.1 to 65.12 | ns | 0.0764 | | 5 vs. 10 | -70.84 | -251.7 to 110.0 | ns | 0.2776 | | 5 vs. 15 | -124.4 | -199.8 to -49.05 | * | 0.0187 | | 5 vs. 20 | -120.6 | -454.1 to 212.8 | ns | 0.3156 | | 10 vs. 15 | -53.59 | -159.6 to 52.38 | ns | 0.1793 | | 10 vs. 20 | -49.78 | -224.8 to 125.2 | ns | 0.4509 | | 15 vs. 20 | 3.806 | -263.4 to 271.0 | ns | >0.9999 | | | CL | .Ca-STAR OE | | | | 0 vs. 5 | -144.7 | -412.9 to 123.5 | ns | 0.1597 | | 0 vs. 10 | -233.3 | -434.0 to -32.64 | * | 0.0373 | | 0 vs. 15 | -255.6 | -442.4 to -68.82 | * | 0.0271 | | 0 vs. 20 | -296.5 | -670.2 to 77.12 | ns | 0.078 | | 5 vs. 10 | -88.61 | -200.4 to 23.17 | ns | 0.0782 | | 5 vs. 15 | -110.9 | -303.9 to 82.12 | ns | 0.1426 | | 5 vs. 20 | -151.8 | -263.7 to -39.96 | * | 0.0275 | | 10 vs. 15 | -22.28 | -239.7 to 195.1 | ns | 0.9673 | | 10 vs. 20 | -63.22 | -251.1 to 124.6 | ns | 0.3532 | | 15 vs. 20 | -40.94 | -341.1 to 259.2 | ns | 0.8897 | **Supplementary Table 2:** Tukey's multiple comparisons statistics results for Fig. 3e, post two-way ANOVA. P values were adjusted for multiple comparison using statistical hypothesis testing. | Tukey's multiple comparisons test | Mean Diff. | 95.00% CI of diff. | Summary | Adjusted P
Value | |-----------------------------------|------------|--------------------|---------|---------------------| | Nuc: [5-20s] vs.
Nuc:(20-50s] | 5.701 | -0.2370 to 11.64 | ns | 0.0655 | | Nuc: [5-20s] vs.
Nuc:>50s | 6.58 | 0.6415 to 12.52 | * | 0.0235 | | Nuc: [5-20s] vs.
CCM: [5-20s] | -25.23 | -31.16 to -19.29 | **** | <0.0001 | | Nuc: [5-20s] vs.
CCM:(20-50s] | 0.9476 | -4.990 to 6.886 | ns | 0.9996 | | Nuc: [5-20s] vs.
CCM:>50s | 4.994 | -0.9443 to 10.93 | ns | 0.1415 | | Nuc: [5-20s] vs.
FTC: [5-20s] | -7.338 | -13.28 to -1.400 | ** | 0.0094 | | Nuc: [5-20s] vs.
FTC:(20-50s] | -12.88 | -18.82 to -6.947 | *** | <0.0001 | | Nuc: [5-20s] vs.
FTC:>50s | -4.815 | -10.75 to 1.123 | ns | 0.1699 | | Nuc:(20-50s] vs.
Nuc:>50s | 0.8785 | -5.060 to 6.817 | ns | 0.9998 | | Nuc:(20-50s] vs.
CCM: [5-20s] | -30.93 | -36.87 to -24.99 | *** | <0.0001 | | Nuc:(20-50s] vs.
CCM:(20-50s] | -4.753 | -10.69 to 1.185 | ns | 0.1806 | | Nuc:(20-50s] vs.
CCM:>50s | -0.7073 | -6.645 to 5.231 | ns | >0.9999 | | Nuc:(20-50s] vs.
FTC: [5-20s] | -13.04 | -18.98 to -7.101 | *** | <0.0001 | | Nuc:(20-50s] vs.
FTC:(20-50s] | -18.59 | -24.52 to -12.65 | *** | <0.0001 | | Nuc:(20-50s] vs.
FTC:>50s | -10.52 | -16.45 to -4.578 | *** | 0.0002 | | Nuc:>50s vs. CCM:
[5-20s] | -31.81 | -37.74 to -25.87 | *** | <0.0001 | | Nuc:>50s vs.
CCM:(20-50s] | -5.632 | -11.57 to 0.3061 | ns | 0.0708 | | Nuc:>50s vs.
CCM:>50s | -1.586 | -7.524 to 4.352 | ns | 0.9874 | | Nuc:>50s vs. FTC:
[5-20s] | -13.92 | -19.86 to -7.979 | **** | <0.0001 | |----------------------------------|--------|------------------|------|---------| | Nuc:>50s vs.
FTC:(20-50s] | -19.46 | -25.40 to -13.53 | *** | <0.0001 | | Nuc:>50s vs.
FTC:>50s | -11.39 | -17.33 to -5.456 | **** | <0.0001 | | CCM: [5-20s] vs.
CCM:(20-50s] | 26.17 | 20.24 to 32.11 | *** | <0.0001 | | CCM: [5-20s] vs.
CCM:>50s | 30.22 | 24.28 to 36.16 | *** | <0.0001 | | CCM: [5-20s] vs.
FTC: [5-20s] | 17.89 | 11.95 to 23.83 | *** | <0.0001 | | CCM: [5-20s] vs.
FTC:(20-50s] | 12.34 | 6.403 to 18.28 | *** | <0.0001 | | CCM: [5-20s] vs.
FTC:>50s | 20.41 | 14.47 to 26.35 | *** | <0.0001 | | CCM:(20-50s] vs.
CCM:>50s | 4.046 | -1.892 to 9.984 | ns | 0.3461 | | CCM:(20-50s] vs.
FTC: [5-20s] | -8.285 | -14.22 to -2.347 | ** | 0.003 | | CCM:(20-50s] vs.
FTC:(20-50s] | -13.83 | -19.77 to -7.894 | *** | <0.0001 | | CCM:(20-50s] vs.
FTC:>50s | -5.762 | -11.70 to 0.1757 | ns | 0.0611 | | CCM:>50s vs. FTC:
[5-20s] | -12.33 | -18.27 to -6.393 | *** | <0.0001 | | CCM:>50s vs.
FTC:(20-50s] | -17.88 | -23.82 to -11.94 | *** | <0.0001 | | CCM:>50s vs.
FTC:>50s | -9.809 | -15.75 to -3.871 | *** | 0.0005 | | FTC: [5-20s] vs.
FTC:(20-50s] | -5.547 | -11.49 to 0.3910 | ns | 0.0779 | | FTC: [5-20s] vs.
FTC:>50s | 2.523 | -3.415 to 8.461 | ns | 0.8468 | | FTC:(20-50s] vs.
FTC:>50s | 8.07 | 2.132 to 14.01 | ** | 0.0038 | ## **Supplementary Table 3:** Signal detection cut-off manipulations and its influence over events classification reported as difference to cut-off used in main text (Fig. 3e) | Mean % tracks | | [5-20s] | | | (20-50s] >50s | | >50s | | | | | |---|---------|----------|---------|---------|---------------|---------|---------|---------|----------|-----------------------------|------------------------| | # of frames to count signal as positive | Nuc | ССМ | FTC | Nuc | ССМ | FTC | Nuc | CCM | FTC | Median
for all
events | Mode for
all events | | 2 | 10.21 | 31.98 | 15.08 | 3.15 | 9.91 | 15.68 | 1.71 | 2.93 | 9.35 | 2.7s | [0.5-1.5s] | | (0.6s) | (+2.66) | (-0.8) | (+0.19) | (+1.30) | (+3.30) | (-4.76) | (+0.74) | (+0.38) | (-3.01) | (-0.9s) | (-1s) | | 5
(1.5s) | 7.55 | 32.78 | 14.89 | 1.85 | 6.60 | 20.44 | 0.97 | 2.56 | 12.37 | 3.6s | [1.5-2.5s] | | 7 | 7.21 | 32.12 | 13.04 | 1.78 | 6.31 | 22.14 | 1.04 | 2.44 | 13.91 | 3.9s | [1.5-2.5s] | | (2.1s) | (-0.34) | (-0.66) | (-1.84) | (-0.07) | (-0.29) | (+1.71) | (+0.07) | (-0.12) | (+1.54) | (+0.3s) | (ND) | | 11 | 6.85 | 30.95 | 10.59 | 1.54 | 6.21 | 23.85 | 0.94 | 2.76 | 16.32 | 3.9s | [1.5-2.5s] | | (3.3s) | (-0.70) | (-1.82) | (-4.30) | (-0.31) | (-0.40) | (+3.41) | (-0.03) | (+0.21) | (+3.95) | (+0.3s) | (ND) | | 20 | 6.88 | 22.16 | 9.53 | 2.64 | 6.81 | 25.38 | 1.74 | 2.22 | 22.65 | 5.7s | [-0.5-0.5s] | | (6s) | (-0.67) | (-10.62) | (-5.36) | (+0.79) | (+0.20) | (+4.94) | (+0.77) | (-0.34) | (+10.28) | (+2.1s) | (-2s) | **Supplementary Table 4:** Tukey's multiple comparisons statistics results for Fig. 4g (Ctrl siRNA), post two-way ANOVA. P values were adjusted for multiple comparison using statistical hypothesis testing. | Tukey's multiple comparisons test | Mean Diff. | 95.00% CI of diff. | Summary | Adjusted P
Value | |-----------------------------------|------------|--------------------|---------|---------------------| | Nuc:[5-20s] vs.
Nuc:(20-50s] | 3.977 | -1.423 to 9.378 | ns | 0.2599 | | Nuc:[5-20s] vs.
Nuc:>50s | 5.996 | 0.5954 to 11.40 | * | 0.0231 | | Nuc:[5-20s] vs.
CCM:[5-20s] | -18.53 | -23.93 to -13.13 | **** | <0.0001 | | Nuc:[5-20s] vs.
CCM:(20-50s] | -1.218 | -6.618 to 4.183 | ns | 0.9958 | | Nuc:[5-20s] vs.
CCM:>50s | 4.426 | -0.9748 to 9.826 | ns | 0.1613 | | Nuc:[5-20s] vs.
FTC:[5-20s] | -6.902 | -12.30 to -1.501 | ** | 0.0069 | | Nuc:[5-20s] vs.
FTC:(20-50s] | -15.84 | -21.24 to -10.44 | **** | <0.0001 | | Nuc:[5-20s] vs.
FTC:>50s | -7.956 | -13.36 to -2.556 | ** | 0.0017 | | Nuc:(20-50s] vs.
Nuc:>50s | 2.019 | -3.382 to 7.419 | ns | 0.9157 | | Nuc:(20-50s] vs.
CCM:[5-20s] | -22.5 | -27.90 to -17.10 | **** | <0.0001 | | Nuc:(20-50s] vs.
CCM:(20-50s] | -5.195 | -10.60 to 0.2056 | ns | 0.0647 | | Nuc:(20-50s] vs.
CCM:>50s | 0.4483 | -4.952 to 5.849 | ns | >0.9999 | | Nuc:(20-50s] vs.
FTC:[5-20s] | -10.88 | -16.28 to -5.479 | **** | <0.0001 | | Nuc:(20-50s] vs.
FTC:(20-50s] | -19.82 | -25.22 to -14.42 | **** | <0.0001 | | Nuc:(20-50s] vs.
FTC:>50s | -11.93 | -17.33 to -6.533 | **** | <0.0001 | | Nuc:>50s vs.
CCM:[5-20s] | -24.52 | -29.92 to -19.12 | **** | <0.0001 | | Nuc:>50s vs.
CCM:(20-50s] | -7.213 | -12.61 to -1.813 | ** | 0.0045 | | Nuc:>50s vs.
CCM:>50s | -1.57 | -6.971 to 3.830 | ns | 0.9788 | | Nuc:>50s vs.
FTC:[5-20s] | -12.9 | -18.30 to -7.497 | **** | <0.0001 | |----------------------------------|--------|-------------------|------|---------| | Nuc:>50s vs.
FTC:(20-50s] | -21.84 | -27.24 to -16.44 | **** | <0.0001 | | Nuc:>50s vs.
FTC:>50s | -13.95 | -19.35 to -8.552 | *** | <0.0001 | | CCM:[5-20s] vs.
CCM:(20-50s] | 17.31 | 11.91 to 22.71 | *** | <0.0001 | | CCM:[5-20s] vs.
CCM:>50s | 22.95 | 17.55 to 28.35 | *** | <0.0001 | | CCM:[5-20s] vs.
FTC:[5-20s] | 11.62 | 6.224 to 17.02 | *** | <0.0001 | | CCM:[5-20s] vs.
FTC:(20-50s] | 2.684 | -2.717 to 8.084 | ns | 0.716 | | CCM:[5-20s] vs.
FTC:>50s | 10.57 | 5.169 to 15.97 | *** | <0.0001 | | CCM:(20-50s] vs.
CCM:>50s | 5.643 | 0.2427 to 11.04 | * | 0.0367 | | CCM:(20-50s] vs.
FTC:[5-20s] | -5.684 | -11.08 to -0.2837 | * | 0.0348 | | CCM:(20-50s] vs.
FTC:(20-50s] | -14.62 | -20.03 to -9.224 | *** | <0.0001 | | CCM:(20-50s] vs.
FTC:>50s | -6.739 | -12.14 to -1.338 | ** | 0.0086 | | CCM:>50s vs.
FTC:[5-20s] | -11.33 | -16.73 to -5.927 | *** | <0.0001 | | CCM:>50s vs.
FTC:(20-50s] | -20.27 | -25.67 to -14.87 | *** | <0.0001 | | CCM:>50s vs.
FTC:>50s | -12.38 | -17.78 to -6.982 | **** | <0.0001 | | FTC:[5-20s] vs.
FTC:(20-50s] | -8.941 | -14.34 to -3.540 | *** | 0.0005 | | FTC:[5-20s] vs.
FTC:>50s | -1.055 | -6.455 to 4.346 | ns | 0.9984 | | FTC:(20-50s] vs.
FTC:>50s | 7.886 | 2.485 to 13.29 | ** | 0.0018 | **Supplementary Table 5:** Tukey's multiple comparisons statistics results for Fig. 4g (CLCa siRNA) after two-way ANOVA. P values were adjusted for multiple comparison using statistical hypothesis testing. | Tukey's multiple comparisons test | Mean Diff. | 95.00% CI of diff. | Summary | Adjusted P
Value | |-----------------------------------|------------|--------------------|---------|---------------------| | Nuc:[5-20s] vs.
Nuc:(20-50s] | 3.55 | -4.236 to 11.34 | ns | 0.7944 | | Nuc:[5-20s] vs.
Nuc:>50s | 5.584 | -2.202 to 13.37 | ns | 0.2882 | | Nuc:[5-20s] vs.
CCM:[5-20s] | -16.08 | -23.86 to -8.291 | *** | <0.0001 | | Nuc:[5-20s] vs.
CCM:(20-50s] | -2.901 | -10.69 to 4.885 | ns | 0.917 | | Nuc:[5-20s] vs.
CCM:>50s | 3.23 | -4.556 to 11.02 | ns | 0.8621 | | Nuc:[5-20s] vs.
FTC:[5-20s] | -5.417 | -13.20 to 2.369 | ns | 0.3221 | | Nuc:[5-20s] vs.
FTC:(20-50s] | -19.26 | -27.05 to -11.48 | *** | <0.0001 | | Nuc:[5-20s] vs.
FTC:>50s | -11.48 | -19.27 to -3.695 | ** | 0.0017 | | Nuc:(20-50s] vs.
Nuc:>50s | 2.034 | -5.752 to 9.820 | ns | 0.989 | | Nuc:(20-50s] vs.
CCM:[5-20s] | -19.63 | -27.41 to -11.84 | *** | <0.0001 | | Nuc:(20-50s] vs.
CCM:(20-50s] | -6.452 | -14.24 to 1.334 | ns | 0.1526 | | Nuc:(20-50s] vs.
CCM:>50s | -0.32 | -8.106 to 7.466 | ns | >0.9999 | | Nuc:(20-50s] vs.
FTC:[5-20s] | -8.967 | -16.75 to -1.181 | * | 0.0172 | | Nuc:(20-50s] vs.
FTC:(20-50s] | -22.81 | -30.60 to -15.03 | *** | <0.0001 | | Nuc:(20-50s] vs.
FTC:>50s | -15.03 | -22.82 to -7.245 | **** | <0.0001 | | Nuc:>50s vs.
CCM:[5-20s] | -21.66 | -29.45 to -13.88 | **** | <0.0001 | | Nuc:>50s vs.
CCM:(20-50s] | -8.486 | -16.27 to -0.6993 | * | 0.0267 | | Nuc:>50s vs.
CCM:>50s | -2.354 | -10.14 to 5.432 | ns | 0.9733 | | Nuc:>50s vs.
FTC:[5-20s] | -11 | -18.79 to -3.215 | ** | 0.0026 | |----------------------------------|--------|--------------------|-----|---------| | Nuc:>50s vs.
FTC:(20-50s] | -24.85 | -32.63 to -17.06 | *** | <0.0001 | | Nuc:>50s vs.
FTC:>50s | -17.07 | -24.85 to -9.279 | *** | <0.0001 | | CCM:[5-20s] vs.
CCM:(20-50s] | 13.18 | 5.390 to 20.96 | *** | 0.0004 | | CCM:[5-20s] vs.
CCM:>50s | 19.31 | 11.52 to 27.09 | *** | <0.0001 | | CCM:[5-20s] vs.
FTC:[5-20s] | 10.66 | 2.874 to 18.45 | ** | 0.0036 | | CCM:[5-20s] vs.
FTC:(20-50s] | -3.185 | -10.97 to 4.601 | ns | 0.8706 | | CCM:[5-20s] vs.
FTC:>50s | 4.596 | -3.190 to 12.38 | ns | 0.5208 | | CCM:(20-50s] vs.
CCM:>50s | 6.132 | -1.654 to 13.92 | ns | 0.1949 | | CCM:(20-50s] vs.
FTC:[5-20s] | -2.516 | -10.30 to 5.271 | ns | 0.961 | | CCM:(20-50s] vs.
FTC:(20-50s] | -16.36 | -24.15 to -8.575 | *** | <0.0001 | | CCM:(20-50s] vs.
FTC:>50s | -8.58 | -16.37 to -0.7936 | * | 0.0246 | | CCM:>50s vs.
FTC:[5-20s] | -8.647 | -16.43 to -0.8613 | * | 0.0231 | | CCM:>50s vs.
FTC:(20-50s] | -22.49 | -30.28 to -14.71 | *** | <0.0001 | | CCM:>50s vs.
FTC:>50s | -14.71 | -22.50 to -6.925 | *** | <0.0001 | | FTC:[5-20s] vs.
FTC:(20-50s] | -13.85 | -21.63 to -6.059 | *** | 0.0002 | | FTC:[5-20s] vs.
FTC:>50s | -6.064 | -13.85 to 1.722 | ns | 0.205 | | FTC:(20-50s] vs.
FTC:>50s | 7.781 | -0.004815 to 15.57 | ns | 0.0502 | **Supplementary Table 6:** Tukey's multiple comparisons statistics results of differences between Ctrl and CLCa targeting siRNA from Fig. 4g, post two-way ANOVA. P values were adjusted for multiple comparison using statistical hypothesis testing. | Tukey's multiple comparisons test | Mean Diff. | 95.00% CI of diff. | Summary | Adjusted P
Value | |------------------------------------|------------|--------------------|---------|---------------------| | • | | Nuc | 1 | | | CTRL [5-20s] vs.
CTRL (20-50s] | 3.977 | -1.776 to 9.730 | ns | 0.3202 | | CTRL [5-20s] vs.
CTRL >50s | 5.996 | 0.2426 to 11.75 | * | 0.0369 | | CTRL [5-20s] vs.
CLCa [5-20s] | 0.7478 | -5.005 to 6.501 | ns | 0.9987 | | CTRL [5-20s] vs.
CLCa (20-50s] | 4.298 | -1.455 to 10.05 | ns | 0.242 | | CTRL [5-20s] vs.
CLCa >50s | 6.332 | 0.5787 to 12.09 | * | 0.0239 | | CTRL (20-50s] vs.
CTRL >50s | 2.019 | -3.735 to 7.772 | ns | 0.8954 | | CTRL (20-50s] vs.
CLCa [5-20s] | -3.229 | -8.983 to 2.524 | ns | 0.5477 | | CTRL (20-50s] vs.
CLCa (20-50s] | 0.3209 | -5.432 to 6.074 | ns | >0.9999 | | CTRL (20-50s] vs.
CLCa >50s | 2.355 | -3.399 to 8.108 | ns | 0.8187 | | CTRL >50s vs.
CLCa [5-20s] | -5.248 | -11.00 to 0.5052 | ns | 0.0909 | | CTRL >50s vs.
CLCa (20-50s] | -1.698 | -7.451 to 4.056 | ns | 0.947 | | CTRL >50s vs.
CLCa >50s | 0.3361 | -5.417 to 6.089 | ns | >0.9999 | | CLCa [5-20s] vs.
CLCa (20-50s] | 3.55 | -2.203 to 9.304 | ns | 0.4442 | | CLCa [5-20s] vs.
CLCa >50s | 5.584 | -0.1691 to 11.34 | ns | 0.0614 | | CLCa (20-50s] vs.
CLCa >50s | 2.034 | -3.719 to 7.787 | ns | 0.8924 | | | | ССМ | • | | | CTRL [5-20s] vs.
CTRL (20-50s] | 17.31 | 11.56 to 23.06 | *** | <0.0001 | | CTRL [5-20s] vs.
CTRL >50s | 22.95 | 17.20 to 28.70 | *** | <0.0001 | | CTRL [5-20s] vs.
CLCa [5-20s] | 3.196 | -2.557 to 8.949 | ns | 0.5587 | |------------------------------------|---------|-------------------|-----|---------| | CTRL [5-20s] vs.
CLCa (20-50s] | 16.37 | 10.62 to 22.13 | *** | <0.0001 | | CTRL [5-20s] vs.
CLCa >50s | 22.5 | 16.75 to 28.26 | *** | <0.0001 | | CTRL (20-50s] vs.
CTRL >50s | 5.643 | -0.1101 to 11.40 | ns | 0.0572 | | CTRL (20-50s] vs.
CLCa [5-20s] | -14.11 | -19.87 to -8.359 | *** | <0.0001 | | CTRL (20-50s] vs.
CLCa (20-50s] | -0.9361 | -6.689 to 4.817 | ns | 0.9963 | | CTRL (20-50s] vs.
CLCa >50s | 5.196 | -0.5575 to 10.95 | ns | 0.0964 | | CTRL >50s vs.
CLCa [5-20s] | -19.76 | -25.51 to -14.00 | *** | <0.0001 | | CTRL >50s vs.
CLCa (20-50s] | -6.579 | -12.33 to -0.8260 | * | 0.0172 | | CTRL >50s vs.
CLCa >50s | -0.4474 | -6.201 to 5.306 | ns | 0.9999 | | CLCa [5-20s] vs.
CLCa (20-50s] | 13.18 | 7.423 to 18.93 | *** | <0.0001 | | CLCa [5-20s] vs.
CLCa >50s | 19.31 | 13.55 to 25.06 | *** | <0.0001 | | CLCa (20-50s] vs.
CLCa >50s | 6.132 | 0.3786 to 11.89 | * | 0.031 | | | | FTC | | | | CTRL [5-20s] vs.
CTRL (20-50s] | -8.941 | -14.69 to -3.187 | *** | 0.0005 | | CTRL [5-20s] vs.
CTRL >50s | -1.055 | -6.808 to 4.699 | ns | 0.9935 | | CTRL [5-20s] vs.
CLCa [5-20s] | 2.232 | -3.521 to 7.986 | ns | 0.8491 | | CTRL [5-20s] vs.
CLCa (20-50s] | -11.61 | -17.37 to -5.860 | *** | <0.0001 | | CTRL [5-20s] vs.
CLCa >50s | -3.832 | -9.585 to 1.921 | ns | 0.3602 | | CTRL (20-50s] vs.
CTRL >50s | 7.886 | 2.133 to 13.64 | ** | 0.0027 | | CTRL (20-50s] vs.
CLCa [5-20s] | 11.17 | 5.420 to 16.93 | *** | <0.0001 | | CTRL (20-50s] vs.
CLCa (20-50s] | -2.673 | -8.426 to 3.081 | ns | 0.7281 | |------------------------------------|--------|-------------------|-----|---------| | CTRL (20-50s] vs.
CLCa >50s | 5.109 | -0.6444 to 10.86 | ns | 0.1063 | | CTRL >50s vs.
CLCa [5-20s] | 3.287 | -2.466 to 9.040 | ns | 0.5288 | | CTRL >50s vs.
CLCa (20-50s] | -10.56 | -16.31 to -4.805 | *** | <0.0001 | | CTRL >50s vs.
CLCa >50s | -2.777 | -8.530 to 2.976 | ns | 0.6956 | | CLCa [5-20s] vs.
CLCa (20-50s] | -13.85 | -19.60 to -8.092 | *** | <0.0001 | | CLCa [5-20s] vs.
CLCa >50s | -6.064 | -11.82 to -0.3110 | * | 0.0338 | | CLCa (20-50s] vs.
CLCa >50s | 7.781 | 2.028 to 13.53 | ** | 0.0031 | **Supplementary Table 7:** Tukey's multiple comparisons statistics results for Fig. 5j, post two-way ANOVA. P values were adjusted for multiple comparison using statistical hypothesis testing. | Tukey's multiple comparisons test | Mean Diff. | 95.00% CI of diff. | Summary | Adjusted P
Value | |-----------------------------------|------------|--------------------|---------|---------------------| | Nuc: [5-20s] vs.
Nuc:(20-50s] | 5.726 | -5.313 to 16.77 | ns | 0.6715 | | Nuc: [5-20s] vs.
Nuc:>50s | 7.492 | -3.547 to 18.53 | ns | 0.3509 | | Nuc: [5-20s] vs.
CCM: [5-20s] | -17.68 | -28.72 to -6.645 | *** | 0.0007 | | Nuc: [5-20s] vs.
CCM:(20-50s] | 0.9831 | -10.06 to 12.02 | ns | >0.9999 | | Nuc: [5-20s] vs.
CCM:>50s | 4.939 | -6.100 to 15.98 | ns | 0.8094 | | Nuc: [5-20s] vs.
FTC: [5-20s] | -5.714 | -16.75 to 5.325 | ns | 0.6738 | | Nuc: [5-20s] vs.
FTC:(20-50s] | -5.582 | -16.62 to 5.457 | ns | 0.6984 | | Nuc: [5-20s] vs.
FTC:>50s | -3.026 | -14.06 to 8.013 | ns | 0.9851 | | Nuc:(20-50s] vs.
Nuc:>50s | 1.765 | -9.274 to 12.80 | ns | 0.9996 | | Nuc:(20-50s] vs.
CCM: [5-20s] | -23.41 | -34.45 to -12.37 | *** | <0.0001 | | Nuc:(20-50s] vs.
CCM:(20-50s] | -4.743 | -15.78 to 6.296 | ns | 0.8392 | | Nuc:(20-50s] vs.
CCM:>50s | -0.7869 | -11.83 to 10.25 | ns | >0.9999 | | Nuc:(20-50s] vs.
FTC: [5-20s] | -11.44 | -22.48 to -0.4010 | * | 0.0389 | | Nuc:(20-50s] vs.
FTC:(20-50s] | -11.31 | -22.35 to -0.2690 | * | 0.0423 | | Nuc:(20-50s] vs.
FTC:>50s | -8.752 | -19.79 to 2.287 | ns | 0.189 | | Nuc:>50s vs. CCM:
[5-20s] | -25.18 | -36.21 to -14.14 | **** | <0.0001 | | Nuc:>50s vs.
CCM:(20-50s] | -6.509 | -17.55 to 4.530 | ns | 0.5224 | | Nuc:>50s vs.
CCM:>50s | -2.552 | -13.59 to 8.487 | ns | 0.995 | | Nuc:>50s vs. FTC:
[5-20s] | -13.21 | -24.24 to -2.166 | * | 0.0125 | |----------------------------------|--------|------------------|-----|---------| | Nuc:>50s vs.
FTC:(20-50s] | -13.07 | -24.11 to -2.034 | * | 0.0136 | | Nuc:>50s vs.
FTC:>50s | -10.52 | -21.56 to 0.5214 | ns | 0.0688 | | CCM: [5-20s] vs.
CCM:(20-50s] | 18.67 | 7.628 to 29.71 | *** | 0.0004 | | CCM: [5-20s] vs.
CCM:>50s | 22.62 | 11.58 to 33.66 | *** | <0.0001 | | CCM: [5-20s] vs.
FTC: [5-20s] | 11.97 | 0.9311 to 23.01 | * | 0.0278 | | CCM: [5-20s] vs.
FTC:(20-50s] | 12.1 | 1.063 to 23.14 | * | 0.0256 | | CCM: [5-20s] vs.
FTC:>50s | 14.66 | 3.619 to 25.70 | ** | 0.0048 | | CCM:(20-50s] vs.
CCM:>50s | 3.956 | -7.083 to 15.00 | ns | 0.9319 | | CCM:(20-50s] vs.
FTC: [5-20s] | -6.697 | -17.74 to 4.342 | ns | 0.4873 | | CCM:(20-50s] vs.
FTC:(20-50s] | -6.565 | -17.60 to 4.474 | ns | 0.5118 | | CCM:(20-50s] vs.
FTC:>50s | -4.009 | -15.05 to 7.030 | ns | 0.9271 | | CCM:>50s vs. FTC:
[5-20s] | -10.65 | -21.69 to 0.3859 | ns | 0.0634 | | CCM:>50s vs.
FTC:(20-50s] | -10.52 | -21.56 to 0.5179 | ns | 0.0687 | | CCM:>50s vs.
FTC:>50s | -7.965 | -19.00 to 3.074 | ns | 0.2816 | | FTC: [5-20s] vs.
FTC:(20-50s] | 0.132 | -10.91 to 11.17 | ns | >0.9999 | | FTC: [5-20s] vs.
FTC:>50s | 2.688 | -8.351 to 13.73 | ns | 0.993 | | FTC:(20-50s] vs.
FTC:>50s | 2.556 | -8.483 to 13.59 | ns | 0.995 | **Supplementary Table 8:** Key parameters and executable codes used for automated data processing. | Parameters used in automatic processing | | | | | | |--|--|--|--|--|--| | CMEanalysis for frame rate(FR) 0.3s | | | | | | | Example code run for control group: | | | | | | | >> data = loadConditionData('/data/user/tnawara/Data/Data analysis/AA_First | | | | | | | paper/Revisions/siRNA/Exp3/CLCa_CTRL_exp3', 'Ch1', 'Ch2', 'Ch3'}, 'EGFP', 'iRFP713', 'dZ'}, | | | | | | | 'Parameters', [1.49 60 6.45e-6]); | | | | | | | >>[resCTRL, dataCTRL] = cmeAnalysis(data, 'ControlData', resCTRL, 'Overwrite', false, | | | | | | | 'TrackingRadius', [1 3], 'TrackingGapLength', 13); | | | | | | | Example code run for experimental group: | | | | | | | >> data = loadConditionData('/data/user/tnawara/Data/Data analysis/AA_First paper/Revisions/siRNA/Exp3/CLCa_siRNA_exp3', 'Ch1', 'Ch2', 'Ch3'}, 'EGFP', 'iRFP713', 'dZ'}, 'Parameters', [1.49 60 6.45e-6]); | | | | | | | >>[resKD, dataKD] = cmeAnalysis(data, 'ControlData', resCTRL, 'Overwrite', false, 'TrackingRadius', [1 3], 'TrackingGapLength', 13); | | | | | | | | [1.49 60 6.45e-6] / [NA Obj Mag | | | | | | 1) 'Parameters' | Camera_pix_size] | | | | | | 2) 'TrackingRadius' | [1 3] | | | | | | 3) 'TrackingGapLength' | 13 (13*FR = 3.9s)
filtered and valid tracks Median Gap length = 1 | | | | | | 4) Start and end track buffer @ | [15 15] (15*0.3 = 4.5s) | | | | | | runTrackProcessing.m | | | | | | | 5) Minimum track lifetime @ | 6*0.3 = 1.8s | | | | | | runTrackProcessing.m | | | | | | | cme_wraper.m @ dz_beginning.m | | | | | | | 1) Track length | ≥ 5s | | | | | | 2) Single track with valid gaps | Category 1a (determined by CMEanalysis) | | | | | | 3) Is track iRFP713 and Δz positive | [1,1] (determined by CMEanalysis @ ProcessedTracks.mat -> tracks.significantSlave) | | | | | | 4) Numbers of the consecutive positive frame | 5 | | | | | | over the background to count signal beginning | 3 | | | | | | 5) Signal smoothing range for movmean | 3 | | | | | | 6) Frames below the threshold to count signal as de novo | 3 | | | | | | 7) Determining whether the signal is higher than background | signal + background > 2*SD + background | | | | | | 8) Quality of iRFP713 signal | above the threshold for more than 70% of EGFP signal | | | | | | cohort_wraper.m @ CCV_vs_FCL_graph_generator.m | | | | | |---|--|--|--|--| | 1) Track length | ≥ 5s | | | | | 2) Single track with valid gaps | Category 1a (determined by CMEanalysis) | | | | | 3) Is track iRFP713 and Δz positive | [1,1] (determined by CMEanalysis @ ProcessedTracks.mat -> tracks.significantSlave) | | | | | 4) numbers of the consecutive positive frames over background to count signal beginning | 5 | | | | | 5) Signal smoothing range for movmean | 3 | | | | | 6) Frames below the threshold to count signal as de novo | 3 | | | | | 7) Last n frames have to be under threshold | 3 | | | | | 8) Amount of Δz frames above the threshold to count events as Δz positive | more than 30% of EGFP signal | | | | | 9) Amount of Δz frames below the threshold to count events as Δz negative | 100% | | | | | 10) Mean and SD of Δz negative signal | (-25nm ≤ signal ≥25 nm) | | | | Fig. 1e - Raw western blots: Green - CLCa, Red - GAPDH, used in the manuscript **Fig. 4b - Raw western blots:** Green – CLCa, Red – GAPDH, <u>used in the manuscript</u> <u>09.08.21</u> Fig. 5b - Raw western blots: Green - CLCa, Red - GAPDH, used in the manuscript